Math, asked by StrongGirl, 7 months ago

JEE Mains Maths question is in the image

Attachments:

Answers

Answered by pulakmath007
17

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \displaystyle \:  { \bigg( \:  \frac{1 + i}{1 - i}  \bigg)}^{ \frac{m}{2} }  = { \bigg( \:  \frac{1 + i}{1 - i}  \bigg)}^{ \frac{n}{3} }  = 1

FORMULA TO BE IMPLEMENTED

\displaystyle \:  {  \:  \frac{1 + i}{1 - i} }

 = \displaystyle \:  {  \:  \frac{i(1 + i)}{i(1 - i)} }

 = \displaystyle \:  {  \:  \frac{i(1 + i)}{(i - {i}^{2} )} }

 = \displaystyle \:  {  \:  \frac{i(1 + i)}{(i  + 1 )} }

 = \displaystyle \:  {  \:  \frac{i(1 + i)}{(1 + i  )} }

 = i

 \displaystyle \:  { \bigg( \:  \frac{1 + i}{1 - i}  \bigg)}^{ p }  =1 \:  \:  \: gives

  \implies\displaystyle \:   {i}^{p}  = 1

  \implies\displaystyle \:   {i}^{p}  =  {(i)}^{4k}

So p is a multiple of 4

  \implies\displaystyle \:   p = 4k

CALCULATION

 \displaystyle \:  { \bigg( \:  \frac{1 + i}{1 - i}  \bigg)}^{ \frac{m}{2} }  = { \bigg( \:  \frac{1 + i}{1 - i}  \bigg)}^{ \frac{n}{3} }  = 1

Hence

 \displaystyle \:  \frac{m}{2}  \:  \: is \: a \: multiple \:  \: of \: 4

And

 \displaystyle \:  \frac{n}{3}  \:  \: is \: a \: multiple \:  \: of \: 4

Therefore

 \displaystyle \:  m  \:  \: is \: a \: multiple \:  \: of \:  \: 8

And

 \displaystyle \:  n  \:  \: is \: a \: multiple \:  \: of \:  \: 12

RESULT

 \red{ \boxed{Hence \:  HCF \:  ( m, n ) \:  = 4 \: }}

Answered by Anonymous
1

Answer:

4

Step-by-step explanation:

please mark as brainliest answer

Similar questions