Math, asked by StrongGirl, 9 months ago

JEE Mains Maths question is in the image

Attachments:

Answers

Answered by abhi178
2

it has given that \displaystyle\lim_{x\to 0}\left(\frac{1-x+|x|}{1+[x]-\lambda}\right)=L

where [.] is the greatest integer function

we have to find L.

when x > 0

|x| = x , [x] = 0

\displaystyle\lim_{x\to 0^+}\left(\frac{1-x+|x|}{1+[x]-\lambda}\right)=\displaystyle\lim_{x\to 0^+}\frac{1-x+x}{1-\lambda}

= 1/(1 - λ)

when x < 0

|x| = -x , [x] = -1

\displaystyle\lim_{x\to 0^-}\left(\frac{1-x+|x|}{1+[x]-\lambda}\right)=\displaystyle\lim_{x\to 0^-}\frac{1-x-x}{1-1-\lambda}

= 1/λ

for limit is defined

\displaystyle\lim_{x\to 0^+}f(x)=\displaystyle\lim_{x\to 0^-}f(x)

⇒1/(1 - λ) = 1/λ

⇒λ = 1/2

so \displaystyle\lim_{x\to 0}\left(\frac{1-x+|x|}{1+[x]-\lambda}\right) = 1/(1 - λ) = 2 = L

Therefore the value of L = 2

Similar questions