Math, asked by StrongGirl, 9 months ago

JEE Mains Maths question is in the image

Attachments:

Answers

Answered by pulakmath007
24

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

k when

\displaystyle \lim_{x \to 0} \frac{(1- \cos   \frac{ {x}^{2} }{2} ) (1- \cos   \frac{ {x}^{2} }{4} ) }{ {x}^{8} } =  {2}^{ - k}  \:  \: ...(1)

EVALUATION

\displaystyle \lim_{x \to 0} \frac{(1- \cos   \frac{ {x}^{2} }{2} ) (1- \cos   \frac{ {x}^{2} }{4} ) }{ {x}^{8} }

 = \displaystyle \lim_{x \to 0} \frac{(2  { \sin}^{2}    \frac{ {x}^{2} }{2} ) (2  { \sin}^{2}    \frac{ {x}^{2} }{4} )}{ {x}^{8} }

 = 4 \times \displaystyle \lim_{x \to 0} \frac{(  { \sin}^{2}    \frac{ {x}^{2} }{2} ) (  { \sin}^{2}    \frac{ {x}^{2} }{4} )}{ {x}^{8} }

First Limit

 = \displaystyle    \lim_{x \to 0} \frac{({ \sin}^{2}    \frac{ {x}^{2} }{2} ) }{ {x}^{4} }

Let

 \displaystyle \: u =  \frac{ {x}^{2} }{2}

Then

u \to \: 0 \:  \: as \:  \: x \to \: 0

So

\displaystyle    \lim_{x \to 0} \frac{{ \sin}^{2}    \frac{ {x}^{2} }{2}  }{ {x}^{4} }

 =  \displaystyle    \lim_{u \to 0} \frac{{ \sin}^{2}  u  }{ 4{u}^{2} }

 =   \frac{1}{4}  \times \displaystyle    \lim_{u \to 0} \frac{{ \sin}  u  }{ {u}} \times    \lim_{u \to 0} \frac{{ \sin}  u  }{ {u}}

 =  \displaystyle \:  \frac{1}{4}  \times 1 \times 1

 =  \displaystyle \:  \frac{1}{4}

Second Limit

 = \displaystyle     \lim_{x \to 0} \frac{  { \sin}^{2}    \frac{ {x}^{2} }{4} }{ {x}^{4} }

Let

 \displaystyle \: u =  \frac{ {x}^{2} }{4}

Then

u \to \: 0 \:  \: as \:  \: x \to \: 0

So

  \displaystyle     \lim_{x \to 0} \frac{  { \sin}^{2}    \frac{ {x}^{2} }{4} }{ {x}^{4} }

 =  \displaystyle    \lim_{u \to 0} \frac{{ \sin}^{2}  u  }{ 16{u}^{2} }

 =   \displaystyle\frac{1}{16}  \times     \lim_{u \to 0} \frac{{ \sin}  u  }{ {u}} \times    \lim_{u \to 0} \frac{{ \sin}  u  }{ {u}}

 =   \displaystyle\frac{1}{16}  \times1 \times 1

 =   \displaystyle\frac{1}{16}

Hence from above

 4 \times  \displaystyle  \frac{1}{4}  \times \frac{1}{16}  =  {2}^{ - k}

  \implies \:   \displaystyle  \frac{1}{16}  =  {2}^{ - k}

  \implies \:   \displaystyle    {2}^{ - k}  =  {2}^{ - 4}

Hence

k = 4

Similar questions
Math, 4 months ago