JEE Mains Maths question is in the image
Answers
it has given that S = (2 ¹P₀ - 3²P₁ + 4 ³P₂ + .... + 51 terms) + (1 ! - 2 ! + 3! - 4 ! + ...... + 51 terms)
We have to find the value of S.
solution : we know, = n !/(n - r)!
so, ¹P₀ = 1!/(1 - 0)! = 1
²P₁ = 2!/(2 - 1)! = 2!
³P₂ = 3!/(3 - 2)! = 3!
...........
..... ....
⁵¹P₅₀ = 51!/(51 - 50)! = 51!
now S = (2 × 1 ! - 3 × 2! + 4 × 3 ! - 5 × 4! + .... + 52 × 5!) + (1 ! - 2! + 3! - 4! + ..... + 51 !)
= (2! - 3! + 4! - 5! + .... + 52 !) + (1 ! - 2! + 3! - 4! + ..... + 51 !)
= 1 + 52!
Therefore the value of S will be (1 + 52 !)
also read similar questions :
https://brainly.in/question/22127719
[tex]let \: \alpha \: \beta are \: roots \: of \: {x}^{2} + px + 2 = 0 \: and \: \frac{1}{ \alpha } \frac{1}{ \beta } \:...
https://brainly.in/question/22128669