JEE MAINS MATHS QUESTION SEPTEMBER 2020
Answers
EXPLANATION.
⇒ 1 + (1 - 2².1) + (1 - 4².3) + (1 - 6².5) + . . . . . + (1 - 20².19) = α - 220β.
As we know that,
General terms of an ap.
⇒ Tₙ = a + (n - 1)d.
Using this formula in this question, we get.
2, 4, 6, . . . . . 20 are in ap.
First term : a = 2.
Common difference : d = b - a : 4 - 2 = 2.
⇒ Tₙ = 2 + (n - 1)2.
⇒ Tₙ = 2 + 2n - 2.
⇒ Tₙ = 2n.
Now, we find n terms of ap.
⇒ 20 = 2 + (n - 1)2.
⇒ 20 = 2 + 2n - 2.
⇒ 20 = 2n.
⇒ n = 10.
Number of terms : n = 10.
1, 3, 5, . . . . . 19 are in ap.
First term : a = 1.
Common difference : d = b - a : 3 - 1 = 2.
⇒ Tₙ = 1 + (n - 1)2.
⇒ Tₙ = 1 + 2n - 2.
⇒ Tₙ = 2n - 1.
Now, we find n terms of ap.
⇒ 19 = 1 + (n - 1)2.
⇒ 19 = 1 + 2n - 2.
⇒ 19 = 2n - 1.
⇒ 19 + 1 = 2n.
⇒ 20 = 2n.
⇒ n = 10.
Number of terms : n = 10.
Now, we can write whole equation as,
As we know that,
Some standard results.
Sum of squares of first n natural numbers.
Sum of cubes of first n natural numbers.
Using this results in this question, we get.
Option [2] is correct answer.