Math, asked by StrongGirl, 8 months ago

JEE MAINS MATHS QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by Anonymous
8

Reffer the attached file

Hope it helps :)

From attached file , a= cos5x, b= isin5x c = cos5x and d= isin5x

  • Consider option (1)
  • a²-b² = cos²5x -(isin5x)²
  • a²-b² = cos²5x -(i²)(sin²5x)
  • a²-b² = cos²5x - (-1)(sin²5x)
  • a²-b² = cos²5x + sin²5x
  • Let 5x = y , we know , cos²y + sin²y = 1
  • a² - b² = 1
  • So , option (1) a²-b² = 1/2 is a false statement
Attachments:
Answered by pulakmath007
14

\displaystyle\huge\red{\underline{\underline{Solution}}}

A=  \displaystyle\begin{pmatrix}  \cos \theta & i \sin \theta \: \\   - i\sin \theta &  \cos \theta \end{pmatrix}

So

{A}^{2} =  \displaystyle\begin{pmatrix}  \cos \theta & i \sin \theta \: \\   - i\sin \theta &  \cos \theta \end{pmatrix}  \times \displaystyle\begin{pmatrix}  \cos \theta & i \sin \theta \: \\   - i\sin \theta &  \cos \theta \end{pmatrix}

 \implies \: {A}^{2} =  \displaystyle\begin{pmatrix}  {\cos}^{2}  \theta -  {\sin}^{2}  \theta& i \sin \theta \cos \theta +  i \sin \theta \cos \theta\: \\   - i \sin \theta \cos \theta  -   i \sin \theta \cos \theta &   {\cos}^{2}  \theta -  {\sin}^{2}  \theta \end{pmatrix}

 \implies \: {A}^{2} =  \displaystyle\begin{pmatrix}  \cos2 \theta & i \sin 2\theta \: \\   - i\sin2 \theta &  \cos 2\theta \end{pmatrix}

Similarly

 \implies \: {A}^{5} =  \displaystyle\begin{pmatrix}  \cos \: 5 \theta & i \sin 5\theta \: \\   - i\sin \: 5 \theta &  \cos 5\theta \end{pmatrix}

Again it is given that

 \: {A}^{5} =  \displaystyle\begin{pmatrix} a &b \: \\   c &  d \end{pmatrix}

So

a =  \cos 5 \theta \:  \: and \:  \: c =  - i \sin 5 \theta

So

 {a}^{2}   -  {c}^{2}

 =  { \cos  }^{2} 5 \theta \: - {i}^{2}  { \sin }^{2} 5 \theta

 =  { \cos  }^{2} 5 \theta \:  +  { \sin }^{2} 5 \theta \:  \:  \: ( \because \:  {i}^{2}  =  - 1)

 = 1

HENCE THE CORRECT OPTION IS

 \boxed{ {a}^{2}  -  {c}^{2}  = 1}

Similar questions