Math, asked by StrongGirl, 9 months ago

JEE MAINS MATHS QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by ginneman47
0

Answer:

here is the explanation to the given question

Attachments:
Answered by pulakmath007
35

\displaystyle\huge\red{\underline{\underline{Solution}}}

 \displaystyle \:  \frac{dy}{dx}  -  \frac{y - 3x}{ \ln(y - 3x)}  = 3

 \implies \:  \:  \displaystyle \:  \frac{dy}{dx}  - 3 =  \frac{y - 3x}{ \ln(y - 3x)}  .......(1)

Let

z = y - 3x

Differentiating both sides with respect to x we get

 \:  \:  \displaystyle \:  \frac{dz}{dx}  =\frac{dy}{dx}   - 3

From Equation (1)

 \implies \:  \:  \displaystyle \:  \frac{dz}{dx}   =  \frac{z}{ \ln \: z}  .......(1)

 \implies \:  \:  \displaystyle \:   \: \frac{ \ln  z}{z} \:  {dz}  =  dx

On integration

\displaystyle \int\limits_{}^{}  \frac{ \ln z}{z}  \, dz =  \int\limits_{}^{}  \, dx  \:  \:  \: ....(2)

Let

u \:  =  \ln z

Differentiating both sides with respect z we get

 \displaystyle \:  \frac{du}{dz}  =  \frac{1}{z}

From Equation (2)

\displaystyle \int\limits_{}^{}  u \, du =  \int\limits_{}^{}  \, dx  \:  \:  \:

 \implies \:   \displaystyle \: \frac{ {u}^{2} }{2}  = x + c \:  \:  \: (where \:  \: c = constant \: )

Putting the value of u we get

   \displaystyle \: \frac{ { (\ln z)}^{2} }{2}  = x + c \:  \:  \: (where \:  \: c = constant \: )

Putting the value of z we get

   \displaystyle \: \frac{ {  \{\ln(y - 3x)  \}}^{2} }{2}  = x + c \:  \:  \: (where \:  \: c = constant \: )

So the required solution is

 \boxed{   \displaystyle \: \frac{ {  \{\ln(y - 3x)  \}}^{2} }{2}  = x + c \:  \:  \: (where \:  \: c = constant \: )}

Similar questions