Math, asked by StrongGirl, 6 months ago

JEE MAINS MATHS QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by pulakmath007
14

\displaystyle\huge\red{\underline{\underline{Solution}}}

 \displaystyle \:  \frac{dy}{2 + y}  =  \frac{ {e}^{x} }{5 +  {e}^{x} }

On integration

 \displaystyle \int\limits_{}^{}\frac{1}{2 + y}   \, dy  = \int\limits_{}^{}\frac{ {e}^{x} }{5 +  {e}^{x} }   \, dx

Let

u = 2 + y

Differentiating both sides with respect to y

 \displaystyle \:  \frac{du}{dy}  = 1

 \implies \: du = dy

Let

 \displaystyle \: v = 5 +  {e}^{x}

Differentiating both sides with respect to x

 \displaystyle \:  \frac{dv}{dx}  =  {e}^{x}

 \implies \: dv =  {e}^{x} dx

So

 \displaystyle \int\limits_{}^{}\frac{1}{2 + y}   \, dy  = \int\limits_{}^{}\frac{ {e}^{x} }{5 +  {e}^{x} }   \, dy

 \implies \:  \displaystyle \int\limits_{}^{}\frac{du}{u}    = \int\limits_{}^{}\frac{dv }{v }

 \implies \: log \: u = log \: v + log \: c

Where log c is a constant

 \implies \: log \: u = log \: (cv)

 \implies \: u = cv

 \implies \: 2 + y = c(5 +  {e}^{x} )

Now by the given condition x = 0, y = 4

So

6 = c(5 + 1)

 \therefore \:  \: c = 1

So

2 + y = 5 +  {e}^{x}

 \implies \:  y = 3 +  {e}^{x}

Now

for \:  \: x =  log_{e}(13)  \:  \: we \: have

y = 3 +  {e}^{ log_{e}(13) }

 \implies \: y = 3 + 13 = 16

RESULT

Hence the required value of y is 16

Similar questions