JEE MAINS MATHS QUESTION SEPTEMBER 2020,.
Answers
If volume of parallelepiped whose coterminous edges are a = i + j + n k, b = 2i + 4j - n k and c = i + n j + 3k is 158
then which of the following is correct ?
- n = 7
- n = 9
- a.c = 17
- b.c = 10
solution : we know, volume of parallelepiped, v = [a b c ]
⇒158 = for n ≥ 0
⇒158 = 1 (12 + n ²) – (6 + n) + n(2n – 4)
⇒158 = 12 + n² - 6 - n + 2n² - 4n
⇒152 = 3n² - 5n
⇒3n² - 5n - 152 = 0
⇒3n² - 24n + 19n - 152 = 0
⇒n = 8, -38/6 but n ≠ -38/6
so, n = 8
now a.c = (i + j + n k).(i + n j + 3k)
= 1 + n + 3n
= 1 + 4n = 1 + 4 × 8 = 33
b.c = (2i + 4j - n k).(i + n j + 3k)
= 2 + 4n - 3n
= 2 + n
= 2 + 8 = 10
Therefore correct option is (4) b.c = 10
n = 7
n = 9
a.c = 17
b.c = 10
solution : we know, volume of parallelepiped, v = [a b c ]
⇒158 = for n ≥ 0
⇒158 = 1 (12 + n ²) – (6 + n) + n(2n – 4)
⇒158 = 12 + n² - 6 - n + 2n² - 4n
⇒152 = 3n² - 5n
⇒3n² - 5n - 152 = 0
⇒3n² - 24n + 19n - 152 = 0
⇒n = 8, -38/6 but n ≠ -38/6
so, n = 8
now a.c = (i + j + n k).(i + n j + 3k)
= 1 + n + 3n
= 1 + 4n = 1 + 4 × 8 = 33
b.c = (2i + 4j - n k).(i + n j + 3k)
= 2 + 4n - 3n
= 2 + n
= 2 + 8 = 10
Therefore correct option is (4) b.c = 10