Math, asked by StrongGirl, 9 months ago

JEE MAINS MATHS QUESTION SEPTEMBER 2020 ..

Attachments:

Answers

Answered by pulakmath007
14

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

The (r+1)th term of an Binomial Expansion of

 {(a + x)}^{n}  \:  \: is \:

 \large{ {}^{n} C_r} \:  \times  {a}^{n - r}  \times  {x}^{r}

EVALUATION

Let coefficient of x occurs in (r+1)th term of an Binomial Expansion of

 \displaystyle \:  { \bigg( {x}^{m}  +  \frac{1}{ {x}^{2} } \: \bigg ) }^{22}

Now the (r+1)th term of

 \displaystyle \:  { \bigg( {x}^{m}  +  \frac{1}{ {x}^{2} } \: \bigg ) }^{22}  \:  \: is \:

 =   \displaystyle \: \large{ {}^{22} C_r} \:  \times  { ({x}^{m} )}^{22 - r}  \times  { \bigg( \frac{1}{ {x}^{2} }  \bigg)}^{r}

 =   \displaystyle \: \large{ {}^{22} C_r} \:  \times  { {x}^{} }^{22 m- mr - 2r}

By the given condition

 \large{ {}^{22} C_r}  = 1540 \:  \:  \: and \:  \: \:   {22 m- mr - 2r}  = 1

Now

 {22 m- mr - 2r}  = 1  \:  \: gives \:

 \displaystyle \: m =  \frac{2r  +  1}{ 22 - r}  \:  \: ....(1)

Again

 \displaystyle \:  \large{ {}^{22} C_r}  = 1540

 \implies \:  \displaystyle \:  \large{ {}^{22} C_r}  = 22 \times 7 \times 5 \times 2

 \implies \:  \displaystyle \:  \large{ {}^{22} C_r}  =  \frac{22 \times 21 \times 20 }{3 \times 2}

 \displaystyle \:   \implies \: \large{ {}^{22} C_r}  =  \large{ {}^{22} C_{19}}

 \implies \: r = 19

From Equation (1)

 \displaystyle \: m =  \frac{(2 \times 19)  +  1}{ 22 - 19}  \:  \:

 \implies \:  \displaystyle \: m =  \frac{39}{3}  \:  \:

 \implies \:  \displaystyle \: m =  13

RESULT

Hence the required value of m is 13

Similar questions