Math, asked by StrongGirl, 9 months ago

JEE MAINS MATHS QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by pulakmath007
17

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We are aware of the identity of Definite Integral that

\displaystyle \int\limits_{- a}^{ a }  f(x) \, dx  = \displaystyle \int\limits_{0}^{ a }  \bigg( f(x)  + f( - x) \bigg)\, dx

TO DETERMINE

\displaystyle \int\limits_{-  \frac{\pi}{2} }^{ \frac{\pi}{2} }  \frac{1}{1 +  {e}^{ \sin x} }  \, dx

EVALUATION

Using above mentioned Identity we get

\displaystyle \int\limits_{-  \frac{\pi}{2} }^{ \frac{\pi}{2} }  \frac{1}{1 +  {e}^{ \sin x} }  \, dx

 = \displaystyle \int\limits_{0 }^{ \frac{\pi}{2} }   \bigg(\frac{1}{1 +  {e}^{ \sin x} }  +    \frac{1}{1 +  {e}^{ \sin ( - x )} }  \bigg)\, dx

 = \displaystyle \int\limits_{0 }^{ \frac{\pi}{2} }   \bigg(\frac{1}{1 +  {e}^{ \sin x} }  +    \frac{1}{1 +  {e}^{  - \sin x} }  \bigg)\, dx

 = \displaystyle \int\limits_{0 }^{ \frac{\pi}{2} }   \bigg(\frac{1}{1 +  {e}^{ \sin x} }  +    \frac{1}{1 +  \frac{1}{ {e}^{  \sin x}}  }  \bigg)\, dx

 = \displaystyle \int\limits_{0 }^{ \frac{\pi}{2} }   \bigg(\frac{1}{1 +  {e}^{ \sin x} }  +    \frac{{e}^{ \sin x}}{1 +  {e}^{  \sin x} }  \bigg)\, dx

 = \displaystyle \int\limits_{0 }^{ \frac{\pi}{2} }   \frac{1 + {e}^{ \sin x}}{1 +  {e}^{  \sin x} }  \, dx

 = \displaystyle \int\limits_{0 }^{ \frac{\pi}{2} }  1  \, dx

 \displaystyle \:  = \left x \right|_0^ \frac{\pi}{2}

 \displaystyle \:  =  \frac{\pi}{2}  - 0

 \displaystyle \:  =  \frac{\pi}{2}

Similar questions