Math, asked by StrongGirl, 7 months ago

JEE MAINS MATHS QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by mohitmithaniya2908
0

Answer:

y(c-a) may be it is helpfully for you

Answered by pulakmath007
30

\displaystyle\huge\red{\underline{\underline{Solution}}}

\displaystyle\begin{vmatrix} x & a + y & a + x\\ y & b + y &  b + y \\ z & c + y &  c + z \end{vmatrix}

 = \displaystyle\begin{vmatrix} x & a + y & a \\ y & b + y &  b  \\ z & c + y &  c  \end{vmatrix}  \:  \:  (\because \: C_3'=C_3 - C_1 \:  \: )

 = \displaystyle\begin{vmatrix} x &  y & a \\ y &  y &  b  \\ z &  y &  c  \end{vmatrix}  \:  \:  (\because \: C_2'=C_2 - C_3 \:  \: )

 = y\displaystyle\begin{vmatrix} x &  1 & a \\ y &  1 &  b  \\ z &  1 &  c  \end{vmatrix}  \:  \:  (taking \:  \: y \:as \:  common \: from \: 2nd \: column)

 = y\displaystyle\begin{vmatrix} x + a &  1 & a \\ y + b &  1 &  b  \\ z + c &  1 &  c  \end{vmatrix}  \:  \:  (\because \: C_1'=C_1  +  C_3 \:  \: )

 = y\displaystyle\begin{vmatrix} x + a &  1 & a \\ x + a - 1 &  1 &  b  \\ x + a &  1 &  c  \end{vmatrix}  \:  \:  (\because by \: the \: given \: condition)

 = y\displaystyle\begin{vmatrix} x + a &  1 & a \\  - 1 &  0 &  b - a  \\ 0 &  0 &  c - a  \end{vmatrix}  \:  \:  (\because \: R_2'=R_2   -  R_1 \:  \: and \:  \:R_3'=R_3   -  R_1  \: )

 = y(c - a) \:  \:  \: ( on \: expansion \: )

Similar questions