Math, asked by StrongGirl, 9 months ago

JEE MAINS MATHS QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by Anonymous
16

Answer:-

Given:

  • Quadratic equation:- -64x+256=0

Solution:

Compare the given equation with general form of quadratic equations!!!

ax²+bx+c=0

  • a=1
  • b=(-64)
  • c=256

Then also given that alpha and Beta are the roots of the equation,

 \bf \: sum \:  \: of \:  \: the \:  \: roots \:  \:  =  \frac{ - b}{a}  =  \frac{64}{1}  = 64 \\  \\  \bf \: product \:  \: of \:  \: the \:  \: roots \:  \:  =  \frac{c}{a}  =  \frac{256}{1}  = 256

Now, simplify the given,

 \bf \implies \:  \left( \frac{ { \alpha }^{3} }{ { \beta }^{5} }  \right) ^{ \frac{1}{8} }  +  \left( \frac{ { \beta }^{3} }{ { \alpha }^{5} } \right)   ^{ \frac{1}{8} }  \\  \\ \bf \implies \:  \frac{ { \alpha }^{ \frac{3}{8} } }{ { \beta }^{ \frac{5}{8} } }  +  \frac{ { \beta }^{ \frac{3}{8} } }{ { \alpha }^{ \frac{5}{8} } }

Taking LCM:

\bf \implies \:  \frac{ { \alpha }^{ \frac{3}{8} } \times  { \alpha }^{ \frac{5}{8} }  +  { \beta }^{ \frac{3}{8} }  \times  { \beta }^{ \frac{5}{8} } }{ { \alpha }^{ \frac{5}{8} }  \times  { \beta }^{ \frac{5}{8} } }  \\  \\ \bf \implies \:  \frac{ \alpha  +  \beta }{ {( \alpha  \beta )}^{ \frac{5}{8} } }  \\  \\

Substitute the value in above equation,

\bf \implies \:  \frac{ \alpha  +  \beta }{ {( \alpha  \beta )}^{ \frac{5}{8} } }  \\  \\ \bf \implies \:  \frac{64}{ {(256)}^{ \frac{5}{8} } }

 \bf \implies \:  \frac{64}{ {(2}^{8}) ^{ \frac{5}{8} }   }   \\  \\\bf \implies \:  \frac{64}{ {(2)}^{5} }  \\  \\ \bf \implies \:  \frac{64}{32}  \\  \\ \bf \implies \: 2

Option (1) is your answer....

Answered by amansharma264
6

ANSWER.

 \sf  \to \: ( \dfrac{ {a}^{3} }{ {b}^{5} } ) {}^{ \dfrac{1}{8} }  + ( \dfrac{ {b}^{3} }{ {a}^{5} }) {}^{ \dfrac{1}{8} } = 2

EXPLANATION.

 \sf \to \: equation \: of \: roots \:  \implies \:  {x}^{2}  - 64x + 256 = 0 \\  \\  \sf \to \: sum \: of \: the \: roots \: of \: the \: equation \:  = a + b =  \frac{ - b}{a}  = 64 \\  \\  \sf \to \: products \: of \: roots \: of \: the \: equation \:  = ab =  \frac{c}{a}  = 256

 \sf \to \:  \Bigg( \dfrac{ {a}^{3} }{ {b}^{5} }  \Bigg) {}^{ \dfrac{1}{8} }  +  \Bigg( \dfrac{ {b}^{3} }{a {}^{5} }  \Bigg) {}^{ \dfrac{1}{8} } \\  \\  \sf \to \:  \Bigg( \dfrac{a}{b {}^{2} }  \Bigg) {}^{ \dfrac{3}{8} }  +  \Bigg( \frac{b}{a {}^{2} }  \Bigg) {}^{ \dfrac{3}{8} }

 \sf \to \:  \dfrac{(a {}^{ \dfrac{3}{8} } ) }{(b {}^{ \dfrac{5}{8} }) }  +  \dfrac{(b {}^{ \dfrac{3}{8} }) }{(a {}^{ \dfrac{5}{8} } )} \\  \\  \\  \sf \to \:  \frac{a {}^{ \frac{3}{8} } \times a {}^{ \frac{5}{8} }  + b {}^{ \frac{3}{8} }   \times b {}^{ \frac{5}{8} } }{a {}^{ \frac{5}{8} } \times b {}^{ \frac{5}{8} }  }   \\  \\  \\  \sf \to \:  \frac{a {}^{1}  + b {}^{1} }{(ab) {}^{ \frac{5}{8} } }  \\  \\  \sf \to \:  \dfrac{64}{(256) {}^{ \dfrac{5}{8} }  }

 \sf \to \:  \dfrac{64}{(2) {}^{8}  \times  \frac{5}{8} }  \\  \\  \sf \to \:  \frac{64}{32} = 2 = answer

Similar questions