Math, asked by StrongGirl, 9 months ago

JEE MAINS MATHS QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by amansharma264
6

EXPLANATION.

  \sf \to \: circle \: passing \: through \: point \: (0 \:, 1) \\  \\  \sf \to \: touch \: the \: curve \:  \implies \: y \:  =  {x}^{2}  \:  \:  \: at \:  \:  \: (2,4) \:  \:  \: is

 \sf \to \: let \: we \: assume \: that \: centre \: of \: circle \:  = (h,k) \\  \\  \sf \to \: oa {}^{2}  =  {ob}^{2}  \\  \\  \sf \to \: as \: we \: know \: that \\  \\  \sf \to \: (x -  x_{1}) {}^{2}  + (y -  y_{1}) = (x -  x_{2}) {}^{2}  + (y -  y_{2}) {}^{2}

 \sf \to \: (h - 0) {}^{2}  + (k - 1) {}^{2}  = (h - 2) {}^{2} + (k - 4) {}^{2} \\  \\  \sf \to \:  { \cancel{h}^{2}} +  { \cancel{k}^{2}}   + 1 - 2k =  { \cancel{h}^{2}} + 4 - 4h +  { \cancel{k}^{2}}  + 16 - 8k   \\  \\  \sf \to \: 1 - 2k = 4 - 4h + 16 - 8k \\  \\  \sf \to \: 4h + 6k - 19 = 0 \:  \:  \: .......(1)

 \sf \to \: as \: we \: know \: that \:  \\  \\  \sf \to \: slope \: of \: oa \:  =  \frac{k - 4}{h - 2} \\  \\  \sf  \to \: slope \: of \: tangent \: at \: point \: (2 ,4) \: at \: y \:  =  {x}^{2}  = 4 \\  \\  \sf \to \:  m_{1} \times  m_{2} =  - 1 \\  \\  \sf \to \:( slope \: of \: oa) \times (slope \: of \: tangent \: at \: a) =  - 1 \\  \\  \sf \to \frac{k - 4}{h - 2}  \times 4 =  - 1

 \sf \to \:  \dfrac{4k - 16}{h - 2}  =  - 1 \\  \\  \sf \to \: 4k - 16 =  - h + 2 \\  \\  \sf \to \: 4k + h = 18 \:  \:  \: .......(2)

 \sf \to \: from \: equation \: (1) \:  \:  \: and \:  \:  \: (2) \:  \: we \: get \\  \\  \sf \to \: h \:  = 18 - 4k \:  \: .....(3) \\  \\  \sf \to \: put \: the \: value \: in \: equation \: (1) \\  \\  \sf \to \: 4(18 - 4k)  +  6k - 19 = 0 \\  \\  \sf \to \: 72 - 16k  + 6k - 19 = 0 \\  \\  \sf \to \:  - 10k   =  - 53  \\  \\  \sf \to \: k \:  =  \frac{53}{10}

 \sf \to \: put \: the \: value \: in \: equation \: (3) \: we \: get \\  \\  \sf \to \: h \:  = 18 - 4 \times  \frac{53}{10}  \\  \\  \sf \to \: h \:  = 18 -  \frac{106}{5}  \\  \\  \sf \to \: h \:  =  \frac{90 - 106}{5}  \\  \\  \sf \to \: h \:  =  \frac{ - 16}{5}

 \sf \to \: coordinate \: of \: centre \:  = ( \dfrac{ - 16}{5}, \dfrac{53}{10}  )

Attachments:
Similar questions