Physics, asked by StrongGirl, 9 months ago

JEE MAINS PHYSICS QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by arkanil93
0

Answer:

3) is your answer.

✌️✌️✌️✌️

Answered by abhi178
0

Gravitational field intensity is given by, E = Ax/(A² + x²)³/² , then find out potential at x.

solution : using application,

\int dV=-\int{E(x)}\,dx

\int\limits^{V_x}_{V_{\infty}}{dV}=-\int\limits^x_{\infty}{\frac{Ax}{(A^2+x^2)^{3/2}}}\,dx

V_x-V_{\infty}=-\int\limits^x_{\infty}{\frac{Ax}{(A^2+x^2)^{3/2}}}\,dx

let A² + x² = p

differentiating both sides we get,

2x dx = dp

⇒x dx = dp/2

now -\int\limits^x_{\infty}{\frac{Ax}{(A^2+x^2)^{3/2}}}\,dx

=-\int\limits^x_{\infty}{\frac{A}{2p^{3/2}}}\,dp

V_x-0=-\left[\frac{A}{p^{1/2}}\right]^x_{\infty}

V_x=-\left[\frac{A}{\sqrt{A^2+x^2}}\right]^x_{\infty}

V_x=-\frac{A}{\sqrt{A^2+x^2}}

Therefore potential at x is V_x=-\frac{A}{\sqrt{A^2+x^2}}

Similar questions