Physics, asked by StrongGirl, 8 months ago

JEE MAINS PHYSICS QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by BrainlyConqueror0901
31

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\frac{I\:F\:v^{2}}{E\:L^{4}}=Young\:modulus}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies I= Moment \: of \: inertia \\  \\ \tt:  \implies F= Force \\  \\ \tt:  \implies v =  Velocity \\  \\ \tt:  \implies E = Energy \\  \\ \tt:  \implies L = Length \\  \\  \red{\underline \bold{To \: Find :}}  \\  \tt:  \implies Dimension \: of \:  \:  \:  \frac{I\: F\:  {v}^{2} }{E \:  {L}^{4} }  =?

• According to given question :

 \tt \circ \:Dimension \: of \: moment \: of \: inertia = M {L}^{2}   {T}^{0} \\  \\ \tt \circ \:Dimension \: of \: force = M {L}   {T}^{ - 2 } \\  \\\tt \circ \:Dimension \: of \: velocity =  {M}^{0}  {L}   {T}^{ - 1} \\  \\\tt \circ \:Dimension \: of \: energy = M {L}^{2}   {T}^{ - 2} \\  \\ \tt \circ \:Dimension \: of \: length =  {M}^{0}  {L}   {T}^{0}  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  \frac{I \: F\:  {v}^{2} }{E \:  {L}^{4} }  =  \frac{M {L}^{2} {T}^{0}  \times  {MLT}^{ - 2} \times ( {M}^{0} L{T} ^{ - 1})^{2} }{ {ML}^{2} {T}^{ - 2}  \times  ({M}^{0} {L} {T}^{0} )^{4}    }  \\  \\ \tt:  \implies  \frac{I\: F\:  {v}^{2} }{E \:  {L}^{4} }  = \frac{M {L}^{2}    \times  {MLT}^{ - 2}  \times  {L}^{2} {T}^{ - 2}  }{M {L}^{2} {T}^{ - 2}   \times  {L}^{4} }  \\  \\ \tt:  \implies  \frac{I \: F \:  {v}^{2} }{E \:  {L}^{4} }  =  \frac{M}{ {T}^{2} }  \\  \\  \green{\tt:  \implies  \frac{I\: F \:  {v}^{2} }{E \:  {L}^{4} }  = {MT}^{ - 2}  = Young \: modulus}

Answered by Anonymous
30

Option (3) Young modulus.

Explanation :-

Given :-

  • I is a moment of inertia.
  • F is force.
  • v is velocity.
  • E is energy.
  • L is length.

To Find :-

  •  \tt \: Dimension \:  \: of \:  \:  \frac{IFv {}^{2} }{EL{}^{4} }

Solution :-

We know that,

  •  \tt \:  \: Dimesion \:   \: of  \:   \:  moment \:  \:  of  \:  \: inertia \:  = \:  ML {}^{2} T {}^{0}
  •  \tt \:  \: Dimesion \:   \: of  \:   \: force \:  = \:  MLT {}^{ - 2}
  •  \tt \:  \: Dimesion \:   \: of  \:   \: \:  velocity \: = \:  M {}^{0} LT {}^{ - 1}
  •  \tt \:  \: Dimesion \:   \: of  \:   \: energy\:  = \:  ML {}^{2} T {}^{ - 2}
  •  \tt \:  \: Dimesion \:   \: of  \:   \:length\:  = \:  M {}^{0} LT {}^{ 0}

Now,

\tt   \frac{IFv {}^{2} }{EL{}^{4} } =  \frac{ML {}^{2} T {}^{0}  \times \: MLT {}^{ - 2}  \times \: (M {}^{0} LT {}^{ - 1} ) {}^{2}  }{ML {}^{2} T {}^{ - 2}  \times M {}^{0} LT {}^{ 0} }

\tt   \frac{IFv {}^{2} }{EL{}^{4} } =  \frac{ML {}^{2}   \times \: MLT {}^{ - 2}  \times \:  L {}^{2} T {}^{ -2}   }{ML {}^{2} T {}^{ - 2}  \times{ L {}^{4}  }}

\tt   \frac{IFv {}^{2} }{EL{}^{4} } =  \frac{M}{T {}^{2} }

Hence,

{ \boxed{ \red{\tt   \frac{IFv {}^{2} }{EL{}^{4} } =MT {}^{ - 2}  = young \: \:  modulus}}}

Similar questions