Math, asked by MiniDoraemon, 2 months ago

JEE mains previous year Question .
Chapter:- limit , continuity and diffrentiabili​

Attachments:

Answers

Answered by amansharma264
7

EXPLANATION.

\implies \displaystyle  \lim_{x \to \infty} \bigg(\dfrac{x - 3}{x + 2}  \bigg)^{x}

As we know that,

Take x common from numerator and denominator of the equation, we get.

\implies \displaystyle  \lim_{x \to \infty} \dfrac{\bigg(1 - \dfrac{3}{x} \bigg)^{x} }{\bigg(1 + \dfrac{2}{x} \bigg)^{x} }

\implies \displaystyle  \lim_{x \to \infty} = 1^{\infty}

As we can see that,

It is  the indeterminant form of 1^(∞).

\implies \displaystyle  L = e^{\displaystyle  \lim_{x \to \infty} \bigg(f(x) - 1 \bigg) \times g(x)}

Using this formula in the equation, we get.

\implies \displaystyle e^{ \displaystyle  \lim_{x \to \infty}\bigg( \dfrac{x - 3}{x + 2}  - 1 \bigg) (x)}

\implies \displaystyle  e^{ \displaystyle  \lim_{x \to \infty}\bigg( \dfrac{x - 3 - (x + 2)}{x + 2}\bigg) (x) }

\implies \displaystyle  e^{\displaystyle  \lim_{x \to \infty}\bigg( \dfrac{x - 3 - x - 2}{x + 2}\bigg)(x) }

\implies \displaystyle  e^{ \displaystyle  \lim_{x \to \infty}\bigg( \dfrac{-5}{x + 2} \bigg)(x)}

Divide x in the denominator, we get.

\implies \displaystyle e^{\displaystyle  \lim_{x \to \infty}\bigg( \dfrac{-5}{(x + 2)/x} \bigg)}

\implies \displaystyle e^{ \displaystyle  \lim_{x \to \infty}\bigg( \dfrac{- 5}{1 + (2/x)}\bigg) }

\implies \displaystyle  e^{-5}

Option [C] is correct answer.

Answered by CelestialCentrix
4

\huge{ \underline{ \color{teal}{ \textsf{ \textbf{Answer \:  \:  \:  \:  \:  \:  \:  \: }}}}}

let's write it in its form

⇛ \sf \: lim \: x→∞ \:  \:  \:  \:  \:  \: ( \frac{ \frac{x - 3}{x} }{ \frac{x + 2}{x} } )

Divide numerator and denominator by X

⇛ \sf \: lim \: x→∞ \:  \:  \:  \:  \:  \: (\frac{ \frac{1 - 3}{x} }{ \frac{1 + 2}{x} } )

⇛ \sf  1

Let's begin with solving the question

⇛ \sf \: lim \: x→∞ \:  \:  \:  \:  \:  \: 1 + f(x)  {}^{2(x)}

 \sf \: where \: lim \: f(x) = 0 \: and \: ∞→ \alpha

⇛ \sf \: lim \:  \infty → \alpha  \:  \:  \:  \:  \:  \:e {}^{lim \: x -  \alpha \:  \: f(x) g(x)}

⇛ \sf \: lim \:  x → \alpha  \:  \:  \:  \:  \:  \:( \frac{x - 3}{x + 2} ) {}^{x}

⇛ \sf \: lim \:  x → \alpha  \:  \:  \:  \:  \:  \:( \frac{1 + x - 3}{x + 2}  - 1) {}^{x}

⇛ \sf \: lim \:  x → \alpha  \:  \:  \:  \:  \:  \:(1 +  \frac{x - 3 - x - 2}{x + 2} ) {}^{x}

⇛ \sf \: lim \:  x → \alpha  \:  \:  \:  \:  \:  \:(1 +  \frac{ - 5}{x + 2} ) {}^{x}

 \sf⇛lim \: e {}^{x -  \alpha }  \frac{ - 5}{x + 2}  \times x

\sf⇛lim \: e {}^{x → \alpha }  \:  \:  \:  \frac{ - 5}{1 + 2 \div x}

⇛ \sf {e {}^{ - 5} }

 \bold \red{Celestial} \bold{Centrix}

Similar questions