History, asked by StrongGirl, 7 months ago

JEE Mains question is in the image.

Attachments:

Answers

Answered by abhi178
1

question is -> \int\limits^2_{-2}\frac{sin^2x}{\frac{1}{2}+\left[\frac{x}{\pi}\right]}\,dx is equal to ...

solution : we know,

\int\limits^a_b{f(x)}\,dx=\int\limits^a_c{f(x)}\,dx+\int\limits^c_b{f(x)}\,dx

let's use this concept here,

\int\limits^2_{-2}\frac{sin^2x}{\frac{1}{2}+\left[\frac{x}{\pi}\right]}\,dx=\int\limits^2_{0}\frac{sin^2x}{\frac{1}{2}+\left[\frac{x}{\pi}\right]}\,dx+\int\limits^0_{-2}\frac{sin^2x}{\frac{1}{2}+\left[\frac{x}{\pi}\right]}\,dx

here [x/π] , [.] denotes G.I.F

interval 2 < x < 0 , [x/π] = 0

and also interval -2 < x < 0 [x/π] = -1

now \int\limits^2_{0}\frac{sin^2x}{\frac{1}{2}+\left[\frac{x}{\pi}\right]}\,dx=\int\limits^2_0{\frac{sin^2x}{\frac{1}{2}}}\,dx=2\int\limits^2_0sin^2x\,dx

similarly, \int\limits^0_{-2}\frac{sin^2x}{\frac{1}{2}+\left[\frac{x}{\pi}\right]}\,dx=\int\limits^0_{-2}\frac{sin^2x}{-\frac{1}{2}}\,dx=-2\int\limits^0_{-2}sin^2x\,dx

so,I=2\int\limits^2_0{sin^2x}\,dx-2\int\limits^0_{-2}{sin^2x}\,dx

= 0

[ sin²x is an even function.

so, \int\limits^2_{-2}\frac{sin^2x}{\frac{1}{2}+\left[\frac{x}{\pi}\right]}\,dx=2\int\limits^2_0{sin^2x}\,dx=2\int\limits^0_{-2}{sin^2x}\,dx ]

Therefore the value of \int\limits^2_{-2}\frac{sin^2x}{\frac{1}{2}+\left[\frac{x}{\pi}\right]}\,dx is 0

Answered by afzalfahim
1

Answer:

ztsdydckfzfacigzydfuxuxydzufchxufDaZhdExydzsyvidzytvuf

Similar questions