Math, asked by StrongGirl, 5 months ago

JEE mains question is in the image

Attachments:

Answers

Answered by shadowsabers03
12

Given to evaluate,

\displaystyle\longrightarrow I=\int\limits_0^2||x-1|-x|\ dx

Replace x by x+1 so that the limits get reduced by 1.

Then the integral becomes,

\displaystyle\longrightarrow I=\int\limits_{-1}^1||x+1-1|-(x+1)|\ dx

\displaystyle\longrightarrow I=\int\limits_{-1}^1||x|-x-1|\ dx

Let us define a function f:\mathbb{R}\to\mathbb{R} such that,

\longrightarrow f(x)=||x|-x-1|

For x\geq0,

\longrightarrow f(x)=|x-x-1|

\longrightarrow f(x)=1

Then the integral can be split as,

\displaystyle\longrightarrow I=\int\limits_{-1}^0||x|-x-1|\ dx+\int\limits_0^1||x|-x-1|\ dx

\displaystyle\longrightarrow I=\int\limits_{-1}^0||x|-x-1|\ dx+\int\limits_0^11\ dx

\displaystyle\longrightarrow I=1+\int\limits_{-1}^0||x|-x-1|\ dx

Replace x by x-\dfrac{1}{2} in the integral, so that the limits get added by \dfrac{1}{2}.

\displaystyle\longrightarrow I=1+\int\limits_{-\frac{1}{2}}^{\frac{1}{2}}\left|\left|x-\dfrac{1}{2}\right|-\left(x-\dfrac{1}{2}\right)-1\right|\ dx

\displaystyle\longrightarrow I=1+\int\limits_{-\frac{1}{2}}^{\frac{1}{2}}\left|\left|x-\dfrac{1}{2}\right|-x-\dfrac{1}{2}\right|\ dx

Let us define a function g:\left[-\dfrac{1}{2},\ \dfrac{1}{2}\right]\to\mathbb{R} such that,

\displaystyle\longrightarrow g(x)=\left|\left|x-\dfrac{1}{2}\right|-x-\dfrac{1}{2}\right|

For x\in\left[0,\ \dfrac{1}{2}\right] only,

\displaystyle\longrightarrow g(x)=\left|-x+\dfrac{1}{2}-x-\dfrac{1}{2}\right|

\displaystyle\longrightarrow g(x)=2x

And we see that,

\displaystyle\longrightarrow g(-x)=\left|\left|-x-\dfrac{1}{2}\right|+x-\dfrac{1}{2}\right|

\displaystyle\longrightarrow g(-x)=\left|x+\dfrac{1}{2}+x-\dfrac{1}{2}\right|

\displaystyle\longrightarrow g(-x)=2x

Hence g is an even function in the domain.

Therefore,

\displaystyle\longrightarrow\int\limits_{-\frac{1}{2}}^{0}\left|\left|x-\dfrac{1}{2}\right|-x-\dfrac{1}{2}\right|\ dx=\int\limits_0^{\frac{1}{2}}\left|\left|x-\dfrac{1}{2}\right|-x-\dfrac{1}{2}\right|\ dx

Or,

\displaystyle\longrightarrow\int\limits_{-\frac{1}{2}}^{\frac{1}{2}}\left|\left|x-\dfrac{1}{2}\right|-x-\dfrac{1}{2}\right|\ dx=2\int\limits_0^{\frac{1}{2}}\left|\left|x-\dfrac{1}{2}\right|-x-\dfrac{1}{2}\right|\ dx

\displaystyle\longrightarrow\int\limits_{-\frac{1}{2}}^{\frac{1}{2}}\left|\left|x-\dfrac{1}{2}\right|-x-\dfrac{1}{2}\right|\ dx=2\int\limits_0^{\frac{1}{2}}2x\ dx

\displaystyle\longrightarrow\int\limits_{-\frac{1}{2}}^{\frac{1}{2}}\left|\left|x-\dfrac{1}{2}\right|-x-\dfrac{1}{2}\right|\ dx=2\Big[x^2\Big]_0^{\frac{1}{2}}

\displaystyle\longrightarrow\int\limits_{-\frac{1}{2}}^{\frac{1}{2}}\left|\left|x-\dfrac{1}{2}\right|-x-\dfrac{1}{2}\right|\ dx=\dfrac{1}{2}

Then our integral becomes nothing but,

\displaystyle\longrightarrow I=1+\dfrac{1}{2}

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{3}{2}}}

Hence (D) is the answer.

Similar questions