Math, asked by 545abul, 29 days ago

JEE MAINS SOLVE THE ATTACHED QUESTION ❓

Attachments:

Answers

Answered by VεnusVεronίcα
68

\bf\dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi}{4}~ since~  C=\dfrac{\pi}{2}.

 \:

\bf And,~cot\dfrac{A}{2}+cot\dfrac{B}{2}=-\dfrac{q}{p}

 \:

\bf\qquad:\implies\:\dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{tan\dfrac{A}{2}~tan\dfrac{B}{2}}=-\dfrac{q}{p}

 \:

\bf  And,~cot\dfrac{A}{2}~cot\dfrac{B}{2}=\dfrac{r}{p}

 \:

\bf\qquad:\implies~tan\dfrac{A}{2}~tan\dfrac{B}{2}=\dfrac{p}{r}

 \:

\bf\qquad:\implies~ tan\dfrac{A}{2}+tan\dfrac{B}{2}=-\dfrac{q}{r}

 \:

\bf Then :

\bf \qquad:\implies~tan\bigg\lgroup\dfrac{A}{2}+\dfrac{B}{2}\bigg\rgroup=1

 \:

\bf\qquad:\implies~ \dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{1-tan\dfrac{A}{2}~tan\dfrac{B}{2}}=1

 \:

 \bf \qquad : \implies \:  -  \dfrac{q}{q}  = 1 -  \dfrac{p}{r}

 \:

 \bf \qquad :  \implies \:  \dfrac{p}{r}  = 1 +  \dfrac{q}{r}

 \:

 \qquad \bf :  \implies \:  \dfrac{p}{r}  =  \dfrac{r + q}{r}

 \:

 \qquad \bf :  \implies \: p = q + r

 \:

\sf\therefore~\underline{The~ correct~ answer~is~\pmb{\sf p=q+r~[OptionA].}}

Similar questions