#JEE Question
@Areas From Calculus
Q):-)The area bounded by
with the lines
Answers
Given curve are
and
Now,
y² = 4x represents a right handed parabola having vertex at ( 0, 0 ).
Also,
x = 5 is a line parallel to y - axis passes through (5, 0)
Also,
x = 2 is a line parallel to y - axis passes through (2, 0)
So, required area bounded by the curve y² = 4ax between the lines x = 2 and x = 5 is
We know that,
Answer:
⟼y
2
=4x−−−(1)
\rm :\longmapsto\:x = 2 - - - (2):⟼x=2−−−(2)
and
\rm :\longmapsto\:x = 5 - - - (3):⟼x=5−−−(3)
Now,
y² = 4x represents a right handed parabola having vertex at ( 0, 0 ).
Also,
x = 5 is a line parallel to y - axis passes through (5, 0)
Also,
x = 2 is a line parallel to y - axis passes through (2, 0)
So, required area bounded by the curve y² = 4ax between the lines x = 2 and x = 5 is
\rm \: = \: \: 2\displaystyle \rm \int _2 ^{5} y \: dx=2∫
2
5
ydx
\rm \: = \: \: 2\displaystyle \rm \int _2 ^{5} \sqrt{4x} \: dx=2∫
2
5
4x
dx
\rm \: = \: \: 2\displaystyle \rm \int _2 ^{5} 2\sqrt{x} \: dx=2∫
2
5
2
x
dx
\rm \: = \: \: 4\displaystyle \rm \int _2 ^{5} \sqrt{x} \: dx=4∫
2
5
x
dx
\rm \: = \: \: 4\displaystyle \rm \int _2 ^{5} {\bigg(x\bigg) }^{\dfrac{1}{2} } \: dx=4∫
2
5
(x)
2
1
dx
We know that,
\purple{\boxed{ \bf \: \displaystyle \rm \int {x}^{n}dx = \frac{ {x}^{n + 1} }{n + 1} + c}}
∫x
n
dx=
n+1
x
n+1
+c
\rm \: = \: \: 4 \: \bigg(\dfrac{{\bigg(x\bigg) }^{\dfrac{1}{2} + 1}}{\dfrac{1}{2} + 1} \bigg)_2 ^{5}=4(
2
1
+1
(x)
2
1
+1
)
2
5
\rm \: = \: \: 4 \: \bigg(\dfrac{{\bigg(x\bigg) }^{\dfrac{3}{2}}}{\dfrac{3}{2} } \bigg)_2 ^{5}=4(
2
3
(x)
2
3
)
2
5
\rm \: = \: \: \dfrac{8}{3}{\bigg(x\bigg) }^{\dfrac{3}{2} } \bigg |_2 ^{5}=
3
8
(x)
2
3
∣
∣
∣
∣
∣
2
5
\rm \: = \: \: \dfrac{8}{3} \bigg \{{\bigg(5\bigg) }^{\dfrac{3}{2} } - {\bigg(2\bigg) }^{\dfrac{3}{2} } \bigg \}=
3
8
{(5)
2
3
−(2)
2
3
}
\rm \: = \: \: \dfrac{8}{3} \bigg \{{\bigg( {( \sqrt{5)} }^{2} \bigg) }^{\dfrac{3}{2} } - {\bigg( {( \sqrt{2}) }^{2} \bigg) }^{\dfrac{3}{2} } \bigg \}=
3
8
{((
5)
2
)
2
3
−((
2
)
2
)
2
3
}
\rm \: = \: \: \dfrac{8}{3} \bigg \{5 \sqrt{5} - 2 \sqrt{2} \bigg \} \: sq. \: units=
3
8
{5
5
−2
2
}sq.units
Step-by-step explanation: