Math, asked by Anonymous, 4 months ago

Jee Question
If
 \sf \:  \: (1 + x) ^{2}  = C_{0} + C_1x + C_2 {x}^{2}  + C_3 {x}^{3}  + .... + C_nx {}^{n}
Show that
  \displaystyle \sum^{ \sf \: n} _{ \sf \: r = 0} \sf \:  \dfrac{C_r {3}^{r + 4} }{(r + 1)(r + 2)(r + 3)(r + 4)}  =  \dfrac{1}{(n + 1)(n + 2)(n + 3)(n + 4)}  \bigg( {4}^{n + 4}  -  \displaystyle \sum^{ \sf \: 3} _{ \sf \: t= 0}   \sf \: \:^{n + 4} C_t \: 3^{t}  \bigg)

Answers

Answered by shadowsabers03
19

Consider the RHS.

\displaystyle\longrightarrow S=\dfrac{1}{(n+1)(n+2)(n+3)(n+4)}\left(4^{n+4}-\sum_{t=0}^3\,^{n+4}C_t\,3^t\right)

We know that,

\longrightarrow (1+x)^n=\,^n\!C_0+\,^n\!C_1\,x+\,^n\!C_2\,x^2+\,^n\!C_3\,x^3+\,\dots\,+\,^n\!C_n\,x^n

or,

\displaystyle\longrightarrow (1+x)^n=\sum_{t=0}^n\,^n\!C_t\,x^t

Taking x=3 and replacing n by n+4 we get,

\displaystyle\longrightarrow4^{n+4}=\sum_{t=0}^{n+4}\,^{n+4}C_t\,3^t

Then our sum becomes,

\displaystyle\longrightarrow S=\dfrac{1}{(n+1)(n+2)(n+3)(n+4)}\left(\sum_{t=0}^{n+4}\,^{n+4}C_t\,3^t-\sum_{t=0}^3\,^{n+4}C_t\,3^t\right)

\displaystyle\longrightarrow S=\dfrac{1}{(n+1)(n+2)(n+3)(n+4)}\sum_{t=4}^{n+4}\,^{n+4}C_t\,3^t

Put,

  • r=t-4
  • t=r+4
  • t=4\quad\implies\quad r=0
  • t=n+4\quad\implies\quad r=n

Then our sum becomes,

\displaystyle\longrightarrow S=\dfrac{1}{(n+1)(n+2)(n+3)(n+4)}\sum_{r=0}^n\,^{n+4}C_{r+4}\,3^{r+4}

Taking ^{n+4}C_{r+4}=\dfrac{(n+4)!}{(r+4)(n-r)!},

\displaystyle\longrightarrow S=\dfrac{1}{(n+1)(n+2)(n+3)(n+4)}\sum_{r=0}^n\dfrac{(n+4)!}{(r+4)!(n-r)!}\,3^{r+4}

Take,

  • (n+4)!=n!(n+1)(n+2)(n+3)(n+4)
  • (r+4)!=r!(r+1)(r+2)(r+3)(r+4)

Then,

\displaystyle\footnotesize\text{$\longrightarrow S=\dfrac{1}{(n+1)(n+2)(n+3)(n+4)}\sum_{r=0}^n\dfrac{n!(n+1)(n+2)(n+3)(n+4)}{r!(r+1)(r+2)(r+3)(r+4)(n-r)!}\,3^{r+4}$}

\displaystyle\footnotesize\text{$\longrightarrow S=\dfrac{(n+1)(n+2)(n+3)(n+4)}{(n+1)(n+2)(n+3)(n+4)}\sum_{r=0}^n\dfrac{n!}{r!(r+1)(r+2)(r+3)(r+4)(n-r)!}\,3^{r+4}$}

\displaystyle\longrightarrow S=\sum_{r=0}^n\dfrac{n!}{r!(r+1)(r+2)(r+3)(r+4)(n-r)!}\,3^{r+4}

\displaystyle\longrightarrow S=\sum_{r=0}^n\dfrac{1}{(r+1)(r+2)(r+3)(r+4)}\cdot\dfrac{n!}{r!(n-r)!}\,3^{r+4}

\displaystyle\longrightarrow S=\sum_{r=0}^n\dfrac{1}{(r+1)(r+2)(r+3)(r+4)}\cdot\,^nC_r\,3^{r+4}

Taking ^nC_r=C_r we get the LHS.

\displaystyle\longrightarrow S=\sum_{r=0}^n\dfrac{C_r\,3^{r+4}}{(r+1)(r+2)(r+3)(r+4)}

Hence Proved!


amansharma264: Great
Similar questions