Math, asked by jeevankishorbabu9985, 1 month ago

#JEE




solve using Variable separable


 \huge {\red{ \tt{ \frac {dy}{dx} ={ e  }^{x - y}  +  {x}^{2} . {e}^{ - y} }}}

Answers

Answered by mohitgouria29
0

Step-by-step explanation:

ex +2x.ex is this one correct

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \rm\frac {dy}{dx} ={ e }^{x - y} + {x}^{2} . {e}^{ - y} \\

 \rm \implies\frac {dy}{dx} ={ e }^{x}. {e}^{ - y}  + {x}^{2} . {e}^{ - y} \\

 \rm \implies\frac {dy}{dx} = ({x}^{2} +  {e}^{x}  ). {e}^{ - y} \\

 \rm \implies\frac {dy}{ {e}^{ - y}} = ({x}^{2} +  {e}^{x}  )dx  \\

 \rm \implies{e}^{ y}dy= ({x}^{2} +  {e}^{x}  )dx  \\

 \rm \implies \int{e}^{ y}dy=  \int({x}^{2} +  {e}^{x}  )dx  \\

 \rm \implies {e}^{ y}=  \frac{{x}^{3} }{3}+  {e}^{x}   + c  \\

Similar questions