Math, asked by jeevankishorbabu9985, 1 month ago

#JEE
 \huge \red {\tt{ \frac{dy}{dx}  +  {x}^{2}  =  {x}^{2} . {e}^{3y} }}
Using Variable separable ​

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

\rm{ \frac{dy}{dx} + {x}^{2} = {x}^{2} . {e}^{3y} } \\

\rm { \implies \frac{dy}{dx}  = {x}^{2} . {e}^{3y}  -  {x}^{2} } \\

\rm { \implies \frac{dy}{dx}  = {x}^{2} ({e}^{3y}  - 1)  } \\

\rm { \implies \frac{dy}{({e}^{3y}  - 1)}  = {x}^{2} dx  } \\

\rm { \implies  \int\frac{dy}{{e}^{3y}  - 1}  =  \int{x}^{2} dx  } \\

\rm { \implies  \int\frac{(1 -  {e}^{3y}  +  {e}^{3y}) dy}{{e}^{3y}  - 1}  =  \int{x}^{2} dx  } \\

\rm { \implies  \int\frac{    {e}^{3y}}{{e}^{3y}  - 1} dy  -  \int  \frac{ {e}^{3y} - 1 }{ {e}^{3y} - 1 } dy =   \frac{{x}^{3}}{3}  + C  } \\

\rm { \implies  \int\frac{    {e}^{3y}}{{e}^{3y}  - 1} dy  -  \int dy =   \frac{{x}^{3}}{3}  + C  } \\

\rm { \implies   ln({e}^{3y}  - 1)  -  y =   \frac{{x}^{3}}{3}  + C  } \\

\rm { \implies   ln({e}^{3y}  - 1)  -  ln  \: ({e}^{ y} )=   \frac{{x}^{3}}{3}  + C  } \\

\rm { \implies   ln \bigg( \frac{{e}^{3y}  - 1}{ {e}^{ y} }  \bigg)=   \frac{{x}^{3}}{3}  + C  } \\

\rm { \implies    \frac{{e}^{3y}  - 1}{ {e}^{ y} }  =    e^{ \frac{{x}^{3}}{3}  + C  }} \\

\rm { \implies    \frac{{e}^{3y}  - 1}{ {e}^{ y} }  =    e^{ \frac{{x}^{3}}{3} }. {e}^{C} } \\

\rm { \implies    \frac{{e}^{3y}  - 1}{ {e}^{ y} }  =   k e^{ \frac{{x}^{3}}{3} } } \:  \:  \: ....(where \:  \: k =  {e}^{ C}  )\\

\rm { \implies    {e}^{2y}  -  {e}^{  - y}   =   k e^{ \frac{{x}^{3}}{3} } } \\

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given Differential equation is

\red{\rm :\longmapsto\:\tt{ \dfrac{dy}{dx} + {x}^{2} = {x}^{2} . {e}^{3y}}}

can be rewritten as

\rm :\longmapsto\:\tt\dfrac{dy}{dx}  = {x}^{2} . {e}^{3y} -  {x}^{2}

\rm :\longmapsto\:\tt\dfrac{dy}{dx}  = {x}^{2}({e}^{3y} -1)

On separate the variables, we get

\rm :\longmapsto\:\tt\dfrac{dy}{ {e}^{3y}  - 1}  = {x}^{2} \: dx

Now, on integrating both sides, we get

\rm :\longmapsto\:\tt\displaystyle\int\tt \dfrac{dy}{ {e}^{3y}  - 1}  = \displaystyle\int\tt {x}^{2} \: dx

We know,

\boxed{ \rm{ \displaystyle\int\tt  {x}^{n}  \: dx \:  =  \frac{ {x}^{n + 1} }{n + 1}  + c}}

Using this identity, we get

\rm :\longmapsto\:\tt\displaystyle\int\tt \dfrac{1 + {e}^{3y}  - {e}^{3y} }{ {e}^{3y}  - 1}  \: dy= \frac{ {x}^{2 + 1} }{2 + 1}  + c

\rm :\longmapsto\:\tt\displaystyle\int\tt \dfrac{{e}^{3y}  -( {e}^{3y}  - 1)}{ {e}^{3y}  - 1}  \: dy= \frac{ {x}^{3} }{3}  + c

\rm :\longmapsto\:\tt\displaystyle\int\tt \dfrac{{e}^{3y}}{ {e}^{3y}  - 1}  \: dy - \displaystyle\int\tt  \frac{{e}^{3y}  - 1}{{e}^{3y}  - 1} dy= \frac{ {x}^{3} }{3}  + c

\rm :\longmapsto\: \dfrac{1}{3} \tt\displaystyle\int\tt \dfrac{3{e}^{3y}}{ {e}^{3y}  - 1}  \: dy - \displaystyle\int\tt  1 dy= \frac{ {x}^{3} }{3}  + c

We know,

\boxed{ \rm{ \displaystyle\int\tt kdx = kx + c}}

and

\boxed{ \rm{ \displaystyle\int\tt  \frac{f'(x)}{f(x)}  \: dx \:  =  \: log |f(x)|  + c}}

So, using these, we get

\rm :\longmapsto\:\dfrac{1}{3}log |{e}^{3y}  - 1|  - y = \dfrac{ {x}^{3} }{3}  + c

can be further rewritten as,

\rm :\longmapsto\:log |{e}^{3y}  - 1|  - 3y =  {x}^{3}  +3 c

\bf :\longmapsto\:log |{e}^{3y}  - 1|  - 3y =  {x}^{3}  +d \: where \: d \:  =  \: 3c

Similar questions