Math, asked by jeevankishorbabu9985, 19 days ago

#JEE
 \tiny{ \red { \bold{\sqrt{1 +  {x}^{2} } . \sqrt{1 +  {y}^{2} }   \: dx + x.y.dy = 0}}}
Variable Separable ​

Answers

Answered by senboni123456
5

Step-by-step explanation:

We have,

 \rm\sqrt{1 + {x}^{2} } . \sqrt{1 + {y}^{2} } \: dx + x.y.dy = 0 \\

 \rm \implies\sqrt{1 + {x}^{2} } . \sqrt{1 + {y}^{2} } \: dx =  -  x.y.dy\\

 \rm \implies\sqrt{1 + {y}^{2} } .  \frac{\sqrt{1 + {x}^{2} }}{x} \: dx =  -  y.dy\\

 \rm \implies   \frac{\sqrt{1 + {x}^{2} }}{x} \: dx =  -   \frac{y}{ \sqrt{1 + {y}^{2} } }dy\\

 \rm \implies   \int \frac{\sqrt{1 + {x}^{2} }}{x} \: dx =  - \frac{1}{2}  \int   \frac{2y}{ \sqrt{1 + {y}^{2} } }dy\\

 \rm\: In\:\: LHS\:\: put\:\: x=\tan(\theta)\: \implies\:dx=\sec^2(\theta)d\theta

\rm\: In\:\:RHS\:\: derivative \:\:of \:\: denominator\:\: present\:\: in\:\: numerator

So,

 \rm \implies   \int \frac{\sqrt{1 +  \tan^{2} (\theta) }}{ \tan( \theta) } \: \sec ^{2} ( \theta)  d \theta =  - \frac{1}{2} .  2 \sqrt{1 + {y}^{2} } + c\\

 \rm \implies   \int \frac{ \sec (\theta) }{ \tan( \theta) } \: \sec ^{2} ( \theta)  d \theta =  -\sqrt{1 + {y}^{2} } + c\\

 \rm \implies   \int \frac{1 }{ \sin( \theta) } .\sec ^{2} ( \theta)  d \theta =  -\sqrt{1 + {y}^{2} } + c\\

 \rm \implies   \int \cosec( \theta) .\sec ^{2} ( \theta)  d \theta =  -\sqrt{1 + {y}^{2} } + c\\

 \rm \implies    \cosec( \theta)  \int\sec ^{2} ( \theta)  d \theta -  \int \bigg \{  \frac{d}{d \theta} \{ \cosec( \theta) \} \int \sec^{2} ( \theta) d \theta  \bigg \} d \theta=  -\sqrt{1 + {y}^{2} } + c\\

 \rm \implies    \cosec( \theta) \tan( \theta) -  \int \bigg \{   - \cosec( \theta) \cot( \theta)  . \tan( \theta)   \bigg \} d \theta=  -\sqrt{1 + {y}^{2} } + c\\

 \rm \implies    \cosec( \theta) \tan( \theta)  +  \int  \cosec( \theta)    d \theta=  -\sqrt{1 + {y}^{2} } + c\\

 \rm \implies    \cosec   (\theta ) \tan( \theta)  +   ln \bigg |  \tan \bigg(  \frac{\theta}{2} \bigg)  \bigg|  =  -\sqrt{1 + {y}^{2} } + c\\

\rm \implies     \frac{ \sqrt{1 +  {x}^{2} } }{x} . x +   ln \bigg |  \sqrt{ \frac{ \sqrt{1 +  {x}^{2}  }  - 1}{ \sqrt{1 +  {x}^{2} }  + 1} }  \bigg|  =  -\sqrt{1 + {y}^{2} } + c \\

\rm \implies      \sqrt{1 +  {x}^{2} } +   \frac{1}{2}  ln \bigg |   \frac{ \sqrt{1 +  {x}^{2}  }  - 1}{ \sqrt{1 +  {x}^{2} }  + 1}  \bigg|  =  -\sqrt{1 + {y}^{2} } + c \\

Similar questions