Hindi, asked by Razlan809, 2 months ago

Jeeb par ram nam dehri par____

Answers

Answered by kelly324141
1

Answer:

knife

I hope this is right bro

Answered by Anonymous
1

Given:-

A quadratic polynomial f(x) = 4x² + 8x

To Find:-

The zeroes of the polynomial and verify the relationship between the zeroes and coefficients.

Solution:-

We are given, f(x) = 4x² + 8x

\sf\:  \: \:  \:  \:  \:  \: \::  \implies4 {x}^{2}   + 8x = 0\\

 \sf \:  \: \:  \:  \:  \:  \: \:: \implies4x(x  + 2) = 0\\

\sf \implies 4x = 0 \:  \:  \: OR\:  \:  \: x  + 2= 0\\

\sf \pink{\:  \: \:  \:  \:  \:  \: \:: \implies x = 0 \:  \:  \: (or) \:  \:  \: x  =  - 2}\\

\therefore\:\underline{\textsf{ The zeros  are \textbf{0 \: and \: -2 }}}.\\

Now, let us verify the relationship between the zeroes and coefficients.

We know, for a quadratic polynomial f(x) = ax² + bx + c.Where:-

Sum of zeroes = \sf \dfrac{-b}{a}

Product of zeroes = \sf \dfrac{c}{a}

→ In the given quadratic equation 4x² + 8x.

a = 4

b = 8

c = 0

\boxed{\pink{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\sf Sum \: of \: zeroes = 0 + (-2) = -2

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \dfrac{-b}{a} = \dfrac{ - 8}{4}  = -2

\boxed{\pink{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\sf Product \: of \: zeroes = 0 \times -2 = 0

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \dfrac{c}{a} =  \dfrac{0}{4}  = 0

Hence Verified..!!

Similar questions