Math, asked by lijahuchiha, 11 hours ago

John is constructing a rectangular garden with side lengths of 3x+12 and 14x-2. What is the area?

Answers

Answered by AnamN
0

Answer:

Hey!

if this is helpful to you

please mark me as brainliest

Attachments:
Answered by ranipushpa5673
0

Answer:

Now, In \triangle△ OAP

By using Pythagoras Theorem, we have

\begin{gathered}\rm \: {OA}^{2} = {OP}^{2} + {AP}^{2} \\ \end{gathered}

OA

2

=OP

2

+AP

2

\begin{gathered}\rm \: {r}^{2} = {(17 - x)}^{2} + {5}^{2} \\ \end{gathered}

r

2

=(17−x)

2

+5

2

On substituting the value of \rm \: r^2r

2

from equation (1), we get

\begin{gathered}\rm \: {x}^{2} + {12}^{2} = {17}^{2} + {x}^{2} - 34x + {5}^{2} \\ \end{gathered}

x

2

+12

2

=17

2

+x

2

−34x+5

2

\begin{gathered}\rm \: 144= 289 - 34x +25 \\ \end{gathered}

144=289−34x+25

\begin{gathered}\rm \: 144= 314 - 34x \\ \end{gathered}

144=314−34x

\begin{gathered}\rm \: 34x= 314 - 144 \\ \end{gathered}

34x=314−144

\begin{gathered}\rm \: 34x= 170 \\ \end{gathered}

34x=170

\begin{gathered}\rm\implies \:x = 5 \: \\ \end{gathered}

⟹x=5

On substituting x = 5 in equation (1), we get

\begin{gathered}\rm \: {r}^{2} = {12}^{2} + {5}^{2} \\ \end{gathered}

r

2

=12

2

+5

2

\begin{gathered}\rm \: {r}^{2} = 144 + 25 \\ \end{gathered}

r

2

=144+25

\begin{gathered}\rm \: {r}^{2} = 169 \\ \end{gathered}

r

2

=169

\begin{gathered}\rm \: {r}^{2} = {13}^{2} \\ \end{gathered}

r

2

=13

2

\begin{gathered}\bf\implies \:r \: = \: 13 \: cm \\ \end{gathered}

⟹r=13cm

Now, In \triangle△ OAP

By using Pythagoras Theorem, we have

\begin{gathered}\rm \: {OA}^{2} = {OP}^{2} + {AP}^{2} \\ \end{gathered}

OA

2

=OP

2

+AP

2

\begin{gathered}\rm \: {r}^{2} = {(17 - x)}^{2} + {5}^{2} \\ \end{gathered}

r

2

=(17−x)

2

+5

2

On substituting the value of \rm \: r^2r

2

from equation (1), we get

\begin{gathered}\rm \: {x}^{2} + {12}^{2} = {17}^{2} + {x}^{2} - 34x + {5}^{2} \\ \end{gathered}

x

2

+12

2

=17

2

+x

2

−34x+5

2

\begin{gathered}\rm \: 144= 289 - 34x +25 \\ \end{gathered}

144=289−34x+25

\begin{gathered}\rm \: 144= 314 - 34x \\ \end{gathered}

144=314−34x

\begin{gathered}\rm \: 34x= 314 - 144 \\ \end{gathered}

34x=314−144

\begin{gathered}\rm \: 34x= 170 \\ \end{gathered}

34x=170

\begin{gathered}\rm\implies \:x = 5 \: \\ \end{gathered}

⟹x=5

On substituting x = 5 in equation (1), we get

\begin{gathered}\rm \: {r}^{2} = {12}^{2} + {5}^{2} \\ \end{gathered}

r

2

=12

2

+5

2

\begin{gathered}\rm \: {r}^{2} = 144 + 25 \\ \end{gathered}

r

2

=144+25

\begin{gathered}\rm \: {r}^{2} = 169 \\ \end{gathered}

r

2

=169

\begin{gathered}\rm \: {r}^{2} = {13}^{2} \\ \end{gathered}

r

2

=13

2

\begin{gathered}\bf\implies \:r \: = \: 13 \: cm \\ \end{gathered}

⟹r=13cm

Now, In \triangle△ OAP

By using Pythagoras Theorem, we have

\begin{gathered}\rm \: {OA}^{2} = {OP}^{2} + {AP}^{2} \\ \end{gathered}

OA

2

=OP

2

+AP

2

\begin{gathered}\rm \: {r}^{2} = {(17 - x)}^{2} + {5}^{2} \\ \end{gathered}

r

2

=(17−x)

2

+5

2

On substituting the value of \rm \: r^2r

2

from equation (1), we get

\begin{gathered}\rm \: {x}^{2} + {12}^{2} = {17}^{2} + {x}^{2} - 34x + {5}^{2} \\ \end{gathered}

x

2

+12

2

=17

2

+x

2

−34x+5

2

\begin{gathered}\rm \: 144= 289 - 34x +25 \\ \end{gathered}

144=289−34x+25

\begin{gathered}\rm \: 144= 314 - 34x \\ \end{gathered}

144=314−34x

\begin{gathered}\rm \: 34x= 314 - 144 \\ \end{gathered}

34x=314−144

\begin{gathered}\rm \: 34x= 170 \\ \end{gathered}

34x=170

\begin{gathered}\rm\implies \:x = 5 \: \\ \end{gathered}

⟹x=5

On substituting x = 5 in equation (1), we get

\begin{gathered}\rm \: {r}^{2} = {12}^{2} + {5}^{2} \\ \end{gathered}

r

2

=12

2

+5

2

\begin{gathered}\rm \: {r}^{2} = 144 + 25 \\ \end{gathered}

r

2

=144+25

\begin{gathered}\rm \: {r}^{2} = 169 \\ \end{gathered}

r

2

=169

\begin{gathered}\rm \: {r}^{2} = {13}^{2} \\ \end{gathered}

r

2

=13

2

\begin{gathered}\bf\implies \:r \: = \: 13 \: cm \\ \end{gathered}

⟹r=13cm

Similar questions