English, asked by kalyanichopade58, 2 months ago

Jonhsy was not very strong. (rewrite in affairmative form)​

Answers

Answered by MrUnknown78
0

Here is your answer brooo

Explanation:

Johnsy was not strong

Answered by Anonymous
0

\begin{gathered}\begin{gathered}\sf Given -  \begin{cases} &\sf Horizontal \:Range\:(R_1)\:= \frak{50\:m}\\ & \sf  Angle \:of \:projection \:theta_1\:=\:\frak{15°}\\ & \sf Angle \:of\: projection\:theta_2\:=\:\frak{45°}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\sf To \:  Find -   \begin{cases} &\sf New\:Range\:(R_2) \end{cases}\end{gathered}\end{gathered}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

  • Here,It is given that the horizontal range of a projectile fired at an angle of 15° is 50 m. So,the horizontal range of a projectile is defined as the horizontal displacement. Mathematically, it can be written as :-

\large\pink{\boxed{\sf R=\frac{u^2sin2\theta}{g}}}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

Now, according to the first condition we have to find initial speed of the projectile. Where, we know the value of g ( 9.8 meter per second square) . So, the formula will be :-

\purple{\boxed{\sf R_1=\frac{u^2sin2\theta_1}{g}}}

Now, Substitute the given values :-

\:\:\: \:\:\:\:\: :\implies{\sf 50=\dfrac{u^2sin2×15°}{9.8}}\\

\: \:\: \:\: \:\:\: :\implies{\sf 50=\dfrac{u^2×sin30°}{9.8} }\\

\:\:\: \:\: \:\: \: :\implies{\sf u^2=50×9.8×2}\\

\:\:\: \:\: \:\: \: :\implies{\sf u^2=980m/s}

\:\:\: \:\:\:\:\::\implies{\underline{\boxed{\frak{\purple{u= 31.30\;m/s}}}}}\;\bigstar

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

Again, according to the second condition, if it is fired with same speed at an angle of 45°. Its range will be :-

\red{\boxed{\sf R_2=\frac{u^2sin2\theta_2}{g}}}\\

\:\:\: \:\:\:\:\::\implies{\sf R_2=\dfrac{(31.30)^2×sin2×45°}{9.8} }\\

\:\:\: \:\:\:\:\::\implies{\sf R_2=\dfrac{980×sin90°}{9.8} }\\

\:\:\: \:\:\:\:\::\implies{\sf R_2=\dfrac{980×1}{9.8} }\\

\:\:\: \:\:\:\:\::\implies{\underline{\boxed{\frak{\red{R_2= 100\;m}}}}}\;\bigstar\\\\

\therefore{\underline{\sf{Hence, \;the\;new\; range \;is\;\bf{ 100\;m}.}}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions