Math, asked by naomiaguirre213, 9 months ago

Jorge's new yard is the shape of a trapezoid. One of the parallel sides is 25 feet long. The other parallel side is 18 feet long. There is 16 feet between the two parallel sides. Sketch a diagram of Jorge's new yard. How many square feet of sod will Jorge need for his new yard? *

Answers

Answered by BrainlyAnswerer0687
19

\orange{\underline{\underline{\bf{\bigstar \: Diagram }}}}\\

  \:\:

\setlength{\unitlength}{1.6mm}\begin{picture}(5,6)\put(0,0){\line(1,1){7}}\put(40,0){\line(-1,1){7}}\put(0,0){\line(1,0){40}}\end{picture}\put(2,7){\line(1,0){26}}\put(5,0){\line(0,1){7}}\put(5,3){16 feet}\put(13,-2){25 feet}\put(12,8){18 feet}

\\   \:\:

\green{\underline{\underline{\bf{\bigstar \: Solution }}}}\\

\\  \:\:

\tt{\red{ Area\: of\: trapezoid = \dfrac{1}{2} \times (sum\: of\: parallel\: side) \times height }}\\

\tt{\red{\implies Area\: of\: trapezoid = \dfrac{1}{2} \times (25feet + 18feet) \times  16feet }}\\

\tt{\red{\implies Area\: of\: trapezoid = \dfrac{1}{2} \times 43feet \times  16feet }}\\

\tt{\red{\implies Area\: of\: trapezoid = \dfrac{1}{2} \times {688feet}^{2} }}\\

\tt{\red{\implies Area\: of\: trapezoid = \dfrac{{688feet}^{2}}{2} }}\\

\tt{\red{\implies Area\: of\: trapezoid = \cancel{\dfrac{{688feet}^{2}}{2}} }}\\

\tt{\red{\implies Area\: of\: trapezoid = {344feet}^{2} }}\\

\\ \\  \:\:

\blue{\underline{\bf{ {344feet}^{2} \:of\: sod\: will\: Jorge\: need\: for \:his\: new\: yard }}}\\

Similar questions