Math, asked by artikalotra0978, 4 months ago

Jorksheel 2
The present ages of A and B are in the ratio 7:5. Ten years later, their ages will
be in the ratio 9:7. Find their present ages.
EMT​

Answers

Answered by appy1667
49

let the present age of A be 7x and B be 5x

Step-by-step explanation:

A.T.Q,

A:B = 7x : 5x

10 years later,

A's age= 7x + 10

B's age = 5x+10

Now, 7x + 10 / 5x + 10 = 9/7

7(7x+10) = 9(5x+10)

49x + 70 = 45x + 90

49x - 45x = 90-70

4x = 20

x= 20/4

x = 5

therefore, present age of A is 35 years

and the present age of B is 25 years

Answered by sethrollins13
88

Given :

  • Present Ages of A and B are in the ratio 7:5 .
  • After 10 years their ages will be in the ratio 9:7 .

To Find :

  • Present Ages of A and B .

Solution :

\longmapsto\tt{Let\:Present\:age\:of\:A\:be=7x}

\longmapsto\tt{Let\:Present\:age\:of\:B\:be=5x}

After 10 years :

\longmapsto\tt{Age\:of\:A=7x+10}

\longmapsto\tt{Age\:of\:B=5x+10}

A.T.Q :

\longmapsto\tt{\dfrac{7x+10}{5x+10}=\dfrac{9}{7}}

\longmapsto\tt{7(7x+10)=9(5x+10)}

\longmapsto\tt{49x+70=45x+90}

\longmapsto\tt{49x-45x=90-70}

\longmapsto\tt{4x=20}

\longmapsto\tt{x=\cancel\dfrac{20}{4}}

\longmapsto\tt\bf{x=5}

Value of x is 5 .

Therefore :

\longmapsto\tt{Present\:Age\:of\:A=7(5)}

\longmapsto\tt\bf{35\:yrs}

\longmapsto\tt{Present\:Age\:of\:B=5(5)}

\longmapsto\tt\bf{25\:yrs}

Similar questions