Justify why the sum of two irrational numbers is always irrational
Answers
Answered by
2
z1 = x'i + y'i z2=x'' +y'' i
z1+z2=x' +y'i +x'' + y''i
z1 +z2 =x' +x'' +i[y' +y'']
z3 = z1 + z2;
z3 =[x' +x''] + [y' +y'']i x' +x''= X{like real part] | y' +y'' =Yi { like irrational part}
z3 =X +Yi//
accordingly z3 is irrational naumber
Sorry my english is poor
z1+z2=x' +y'i +x'' + y''i
z1 +z2 =x' +x'' +i[y' +y'']
z3 = z1 + z2;
z3 =[x' +x''] + [y' +y'']i x' +x''= X{like real part] | y' +y'' =Yi { like irrational part}
z3 =X +Yi//
accordingly z3 is irrational naumber
Sorry my english is poor
Similar questions