Math, asked by Napinderkaur, 1 year ago

k+5 P k+1=11(k-1)÷2×k+3 P k find k

Answers

Answered by lublana
5

Given equatin is

 k+5Pk+1=\frac{11(k-1)}{2}*k+3Pk

multiply by 2 to both sides

2(k+5Pk+1)=2(\frac{11(k-1)}{2}*k)+2(3Pk)

2k+10Pk+2=11(k-1)k+6Pk

2k+10Pk-6Pk+2=11(k-1)k

 2k+4Pk+2=11(k^2-k)

 2k+4Pk+2=11k^2-11k

 2k+4Pk+2-11k^2+11k=0

 4Pk+2-11k^2+13k=0

 -4Pk-2+11k^2-13k=0

 11k^2-4Pk-2-13k=0

 11k^2+(-4P-13)k-2=0

Now it looks like a quadratic equation  ax^2+bx+c=0

where a=11, b=(-4P-13), c=-2

so we can plug values of a,b,c into quadratic formula to find value of k

 x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}

plug the values of a, b, c

 k=\frac{-(-4P-13) \pm \sqrt{(-4P-13)^2-4(11)(-2)}}{2(11)}

 k=\frac{4P+13 \pm \sqrt{(-4P-13)^2+88}}{22}

 k=\frac{4P+13 \pm \sqrt{(4P+13)^2+88}}{22}

 k=\frac{4P+13 \pm \sqrt{16P^2+104P+169+88}}{22}

 k=\frac{4P+13 \pm \sqrt{16P^2+104P+257}}{22}

It can't be simplified any more because we don't know value of P

Hence final answer is  k=\frac{4P+13 \pm \sqrt{16P^2+104P+257}}{22} .

Similar questions