Math, asked by kumaraman27703, 4 months ago

k In the given figure, AD = 3 cm, AE = 5 cm,
BD = 4 cm, CE = 4 cm, CF = 2 cm, BF = 2.5
cm, then find the pair of parallel lines and
hence their lengths.
[4]​

Answers

Answered by MrAnonymous412
43

 \\   \huge\bf\underline{ Required  \: Question :- } \\  \\

In the given figure, AD = 3 cm, AE = 5 cm,

BD = 4 cm, CE = 4 cm, CF = 2 cm, BF = 2.5

cm, then find the pair of parallel lines and

hence their lengths.

 \\   \huge\bf\underline{Solution :-}  \\  \\

In ∆ABC and ∆ EFC ,

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \angle  \: ACB  =  \angle  \: ECF \:  \:     -  -  -  -  -  -  (common \: angle) \\

Now,

 \\  \sf \:  \: \:  \:  \:   \:  \frac{CF  }{CB}  =  \frac{2}{2 + 4.5}  =  \frac{2}{4.5}  -  -  -  -  - (1) \\  \\

 \\  \sf \:  \: \:  \:  \:   \:  \frac{CE  }{CA}  =  \frac{4}{5+ 4}  =  \frac{4}{9}   = \frac{2}{4.5}  -  -  -  -  - (2) \\  \\

So, From 1 and 2 , we get

 \\  \sf \:  \: \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{CF  }{CB}  \:  = \:  \frac{CE  }{CA}   \\  \\

Since, Two corresponding sides are proportional and including angles are equal.

By SAS rule of similarity, we get

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ∆ABC  \:≈ \:  ∆ EFC \\  \\

So,

 \\  \sf \:  \:  \:  \angle \: ABC  =  \angle \:  ECF \:  -  -  - (c.p.c.t.) \\

 \\  \sf \:  \:  \:  \angle \: BAC   =  \angle \:  FCE \:  -  -  - (c.p.c.t.) \\  \\

Since, the corresponding angles are equal therefore, By corresponding angle test we can say that line EF || Line AB .

So,

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \frac{EF }{AB}  =  \frac{2}{4.5}  \\  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \implies \:  \frac{EF }{7}  =  \frac{2}{4.5}  \\  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \implies \:  {EF }{}  =  \frac{2}{4.5} \times 7  \\  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \implies \:  {EF }{}  =  \frac{14}{4.5} \  \\  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \implies \:  {EF }{}  =  \frac{14 \times 10}{45} \  \\  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \implies \:  {EF }{}  =  \frac{14 0}{45} \  \\  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \implies \underline{ \boxed{ \orange{ \frak{ \:  {EF }{}  =  3.11}}}} \  \\  \\

Therefore,

The lines EF and AB are parallel. The length of EF is 3.11 cm.

___________________________

Hope it's helpful

Attachments:
Similar questions