K is a positive integer such that 36+k,300+k,596+k are the square of three consecutive terms of an ap.Find k
Answers
Answered by
4
Answer:
Step-by-step explanation:
The three expressions are squares of consecutive terms of an AP ,then
√(36 + k), √(300 + k), and √(596 + k)
hence √(300 +k) - √(36 +k) = √(596 + k) - √(300 + k)
[2 √(300 + k) = √(596 + k) + √(36 + k)]^2
4(300 + k) = 596 + k + 2 √[(596 + k)(36 + k)] + 36 + k
1200 + 4k = 632 + 2k + 2 √[(596 + k)(36 + k)]
{568 + 2k = 2 √[(596 + k)(36 + k)] } / 2
{284 + k = √[(596 + k)(36 + k)]}^2
80656 + 568k + k^2 = 21456 + 632k + k^2
59200 = 64k
k = 925
Thus, k = 925
Similar questions