k के किस मान के लिए k+9,2k-1, तथा 2k+7 समांतर श्रेणी के सतत पद होंगे
Answers
Answered by
6
Answer:
अतः k के 18 मान के लिए k+9,2k-1, तथा 2k+7 समांतर श्रेणी के सतत पद होंगे
Step-by-step explanation:
चुकीं हम जानते हैं की समान्तर श्रेणी a, b, c एक सतत पद होंगे, यदि b - a = c - b = k
इसलिए,
(2k-1) - (k+9) = (2k+7) - (2k-1)
⇒ 2k - 1 - k - 9 = 2k + 7 - 2k +1
⇒ k - 10 = 8
⇒ k = 18
अतः k का 18 होगा तो k+9,2k-1, तथा 2k+7 समांतर श्रेणी के सतत पद होंगे
Answered by
5
Step-by-step explanation:
Given For which value of k, k + 9,2k-1, and 2k + 7 will be continuous terms of parallel series
- Let k + 9 = a
- 2k – 1 = b
- 2k + 7 = c
- For it to be in A.P, we get
- So a + c = 2b
- (k + 9) + (2k + 7) = 2(2k – 1)
- K + 9 + 2k + 7 = 4k – 2
- 3k – 4k = -2 – 16
- -k = -18
- So k = 18
For k = 18, so the terms k + 9, 2k – 1, 2k + 7 are in A.P
# Answer with quality
# Bal
Similar questions