Math, asked by 3ankitkr2018, 11 months ago

(k) sin (120° - A) + sin (120° - B) + sin (120° - C)​

Answers

Answered by sivaprasath
1

Answer:

Step-by-step explanation:

Given :

To find : The value of sin (120° - A) + sin (120° - B) + sin (120° - C)​

Solution :

We know that,

sin (A - B) = sin A cos B - cos A sin B

Hence,

sin (120° - A) = sin 120° cos A + cos 120° sin A

sin (120° - B) = sin 120° cos B + cos 120° sin B

sin (120° - C) = sin 120° cos C + cos 120° sin C

________

To solve further,

We need to know the values of,

sin 120° & cos 120°

We know that,

sin (A + B) = sin A cos B + cos A sin B

sin 120° = sin (90 + 30)° = sin 90° cos 30° + cos 90° sin 30°

We know that,

sin 90° = 1,

cos 90° = 0,

cos 30° = \frac{\sqrt{3}}{2},

sin 30° = \frac{1}{2},

So,

sin 120° = sin 90° cos 30° + cos 90° sin 30°

(1)(\frac{\sqrt{3}}{2}) + (0)(\frac{1}{2})

\frac{\sqrt{3}}{2}

hence,

sin 120° = \frac{\sqrt{3}}{2}

We also know that,

sin² θ + cos² θ = 1

cos² θ = 1 - sin² θ

cos² 120° = 1 - sin² 120°

cos² 120° = 1 - (\frac{\sqrt{3}}{2})^2

cos² 120° = 1 - \frac{3}{4}

cos² 120° = \frac{1}{4}

cos 120° = \sqrt{\frac{1}{4}} = - \frac{1}{2}

As cos θ < 0 , θ ∈ (90° , 270°)

Hence,

By substituting the values of cos 120° & sin 120°,

sin (120° - A) = sin 120° cos A + cos 120° sin A

sin (120° - B) = sin 120° cos B + cos 120° sin B

sin (120° - C) = sin 120° cos C + cos 120° sin C,

By adding all 3 equations,

sin (120° - A) + sin (120° - B) + sin (120° - C)

= sin 120°(cos A + cos B + cos C) + cos 120°(sin A + sin B + sin C)

= \frac{\sqrt{3}}{2}(cos A + cos B + cos C) - \frac{1}{2}(sin A + sin B + sin C)

= \frac{\sqrt{3}(cos A + cos B + cos C) - (sin A + sin B + sin C)}{2}

Similar questions