(k) sin (120° - A) + sin (120° - B) + sin (120° - C)
Answers
Answer:
Step-by-step explanation:
Given :
To find : The value of sin (120° - A) + sin (120° - B) + sin (120° - C)
Solution :
We know that,
sin (A - B) = sin A cos B - cos A sin B
Hence,
sin (120° - A) = sin 120° cos A + cos 120° sin A
sin (120° - B) = sin 120° cos B + cos 120° sin B
sin (120° - C) = sin 120° cos C + cos 120° sin C
________
To solve further,
We need to know the values of,
sin 120° & cos 120°
We know that,
sin (A + B) = sin A cos B + cos A sin B
sin 120° = sin (90 + 30)° = sin 90° cos 30° + cos 90° sin 30°
We know that,
sin 90° = 1,
cos 90° = 0,
cos 30° = ,
sin 30° = ,
So,
sin 120° = sin 90° cos 30° + cos 90° sin 30°
⇒
⇒
hence,
sin 120° =
We also know that,
sin² θ + cos² θ = 1
cos² θ = 1 - sin² θ
cos² 120° = 1 - sin² 120°
cos² 120° = 1 -
cos² 120° = 1 -
cos² 120° =
cos 120° = = -
As cos θ < 0 , θ ∈ (90° , 270°)
Hence,
By substituting the values of cos 120° & sin 120°,
sin (120° - A) = sin 120° cos A + cos 120° sin A
sin (120° - B) = sin 120° cos B + cos 120° sin B
sin (120° - C) = sin 120° cos C + cos 120° sin C,
By adding all 3 equations,
sin (120° - A) + sin (120° - B) + sin (120° - C)
= sin 120°(cos A + cos B + cos C) + cos 120°(sin A + sin B + sin C)
=
=