k²-1
k²+1
If cosec 0 + cot 0=k, then prove that cos e
Answers
Question : -
If cosec x + cot x = k the prove that cos x = (k²-1)/(k²+1)
ANSWER
Given : -
cosec x + cot x = k
Required to prove : -
- cos x = (k²-1)/(k²+1)
Proof : -
cosec x + cot x = k
Consider the proof !
cos x = (k²-1)/(k²+1)
Consider the RHS Part
(k²-1)/(k²+1)
since,
- cosec x + cot x = k
([cosec x + cot x]² - 1)/([cosec x + cot x]² + 1)
Using the algebraic identity;
- (a+b)² = a²+b²+2ab
(cosec² x + cot² x + 2*cosec x*cot x - 1)/(cosec² x + cot² x + 2*cosec x*cot x + 1)
Here, in the numerator we are having "-1" let's perform some steps to remove it .
We know that;
- cosec² x - cot² x = 1
- cosec² x = 1 + cot² x ....(1)
This implies;
([1+cot² x]+ cot² x + 2*cosec x*cot x - 1)/(cosec² x + cot² x + 2*cosec x*cot x + 1)
(1+cot² x + cot² x + 2*cosec x*cot x - 1)/(cosec² x + cot² x + 2*cosec x*cot x + 1)
+1,-1 get's cancelled in numerator
(2cot² x + 2*cosec x*cot x)/(cosec² x + cot² x + 2*cosec x*cot x + 1)
Now,
In the denominator we need to remove '1'
So,
We know that;
- cosec² x - cot² x = 1
- cosec² x - 1 = cot² x ....(2)
(2cot² x + 2*cosec x*cot x)/(cosec² x + [cosec² x - 1] + 2*cosec x*cot x + 1)
(2cot² x + 2*cosec x*cot x)/(cosec² x + cosec² x - 1 + 2*cosec x*cot x + 1)
-1,+1 get's cancelled on in the denominator
(2cot² x + 2*cosec x*cot x)/(2cosec² x + 2*cosec x*cot x)
Since,
- cot x = (cos x)/(sin x)
- cosec x = (1)/(sin x)
(2[cos² x]/[sin² x] + 2*[1]/[sin x]*[cos x]/[sin x])/(2[1]/[sin² x] + 2*[1]/[sin x]*[cos x]/[sin x])
([2cos² x]/[sin² x] + [2cos x]/[sin² x])/([2]/[sin² x] + [2cos x]/[sin² x])
([2cos² x + 2 cos x]/[sin² x])/([2 + 2 cos x]/[sin² x])
([2cos² x + 2 cos x]/[sin² x]) ÷ ([2 + 2 cos x]/[sin² x])
([2cos² x + 2 cos x]/[sin² x]) x ([sin² x]/[2 + 2cos x])
sin² x get's cancelled on both numerator and denominator
(2cos² x + 2 cos x)/(2 + 2cos x)
Taking 2 cos x common in numerator & 2 common in denominator
(2cos x[cos x + 1])/(2[1 + cos x])
(2cos x[1 + cos x])/(2[1+cos x])
1+cos x get's cancelled on both numerator and denominator
(2cos x)/(2)
Cancelling 2 in both numerator and denominator
cos x
= RHS
LHS = RHS
Hence Proved !
♣ Qᴜᴇꜱᴛɪᴏɴ :
- If cosec x + cot x = k the prove that cos x = (k²-1)/(k²+1)
★═════════════════★
♣ ɢɪᴠᴇɴ :
- cosec x + cot x = k
★═════════════════★
♣ ᴛᴏ ᴘʀᴏᴠᴇ :
- cos x = (k²-1)/(k²+1)
★═════════════════★
♣ ᴀɴꜱᴡᴇʀ :
cosec x + cot x = k
cos x =
cos x =
Now To Prove :
cos x =
Steps :
______________________
______________________
______________________
______________________
Solve :
L.H.S = R.H.S
Hence Proved !!!!