Hindi, asked by bhawanicloth511, 3 months ago

(क) लभ + क्त्वा
(ख) हन्+अथवा

Answers

Answered by Anonymous
0

Here we are asked to find the value of

\sf\red{{x}^{2} + \dfrac{1} {x}^{2}} and according to the question given that :-

  •  \sf \green {\:  x = \dfrac{3 -  \sqrt{13} }{2}}

For getting the proper solution, we have to use 2 identities!

  •  \sf \purple{ (a + b)² - 2ab = a² + b²}

  •  \sf \purple{ (a - b)² = a² + b² - 2ab}

Here's our required solution!

 \implies \sf  \bigg { {x}^{2}  +  \dfrac{1}{x}^{2}  =  ( x + \dfrac{1}{x} \bigg) ^{2}   - 2 \times  x \times \dfrac{1}{x} } \\  \\  \\ \implies \sf \bigg( \frac{3 -  \sqrt{13} }{2}  +  \frac{1}{ \frac{3 -  \sqrt{13} }{2} }  \bigg) ^{2}  - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\  \\ \implies \sf \bigg( \frac{3 -  \sqrt{13} }{2}  +  \frac{2}{3 -  \sqrt{13} }  \bigg) ^{2}  - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\  \\ \implies \sf \bigg( \frac{(3 -  \sqrt{13} ) ^{2}  + 4}{2(3 -  \sqrt{13} )}   \bigg)^{2}   - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }

 \implies \sf \:  \bigg( \dfrac{ {3}^{2}  + ( \sqrt{13}) ^{2}  - 2(3)( \sqrt{13} ) + 4 }{2(3 -  \sqrt{13} )}  \bigg) ^{2}  - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\  \\ \implies \sf \:  \bigg( \frac{9 + 13 - 6 \sqrt{13}  + 4}{2(3 -  \sqrt{13} )} \bigg) ^{2}   - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\  \\ \implies \sf \:  \bigg( \frac{26 - 6 \sqrt{13} }{2(3 -  \sqrt{13} )}  \bigg) ^{2}  - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\  \\  \implies \sf \:  \bigg( \frac{2(13 - 3 \sqrt{13} )}{2(3 -  \sqrt{13}) }  \bigg) ^{2}  - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\  \\ \implies \sf \:  \bigg(  \frac{ - \sqrt{13} (3 -  \sqrt{13} )}{ 3 -  \sqrt{13} }  \bigg) ^{2}  - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\  \\ \implies \sf \: {( -  \sqrt{13} )}^{2}  - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\  \\ \sf \implies 13 - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\  \\  \implies \boxed{ \sf 11 =  {x}^{2}  +  \frac{1}{ {x}^{2} }}

80

 \implies \sf \:  \bigg( \dfrac{ {3}^{2}  + ( \sqrt{13}) ^{2}  - 2(3)( \sqrt{13} ) + 4 }{2(3 -  \sqrt{13} )}  \bigg) ^{2}  - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }

  \\  \\  \\ \implies \sf \:  \bigg( \frac{9 + 13 - 6 \sqrt{13}  + 4}{2(3 -  \sqrt{13} )} \bigg) ^{2}   - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  </p><p></p><p>[tex] \\  \\  \\ \implies \sf \:  \bigg( \frac{26 - 6 \sqrt{13} }{2(3 -  \sqrt{13} )}  \bigg) ^{2}  - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }

 \\  \\  \\  \implies \sf \:  \bigg( \frac{2(13 - 3 \sqrt{13} )}{2(3 -  \sqrt{13}) }  \bigg) ^{2}  - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }

 \\  \\  \\ \implies \sf \:  \bigg(  \frac{ - \sqrt{13} (3 -  \sqrt{13} )}{ 3 -  \sqrt{13} }  \bigg) ^{2}  - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }

 \\  \\  \\ \implies \sf \: {( -  \sqrt{13} )}^{2}  - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }

  \\  \\  \\ \sf \implies 13 - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }

\\  \\  \\  \implies \boxed{ \sf 11 =  {x}^{2}  +  \frac{1}{ {x}^{2} }}

Similar questions