Math, asked by Gayathri2191, 11 months ago

किसी लंब वृत्तीय बेलन के आधार की परिधि 528 cm है और इसकी ऊँचाई 2 m है । बेलन का आयतन है (r = 22/7 लीजिए।
(1) 6.6528 m3
(2) 2.2176 m3
(3) 3.3264 m3
(4) 4.4352 m3

Answers

Answered by harendrachoubay
2

बेलन का आयतन (4)  "4.4352m^{3}" है।

Step-by-step explanation:

दिया हुआ,

बेलन के आधार की परिधि = 528 cm = 5.28 m और  ऊँचाई = 2 m

∴  बेलन के आधार की परिधि = 2\pi r

2\pi r= 5.28

2\times \dfrac{22}{7} \times r=5.28

⇒ r = 0.84 m

∴  बेलन का आयतन =2\pi rh

= 2\times \dfrac{22}{7} \times 0.84 \times 0.84 \times 2

= 4.4352 m^{3}

इसलिए,  बेलन का आयतन (4)  4.4352m^{3} है।

Answered by FelisFelis
1

The correct option is (4) 4.4352 m³

Step-by-step explanation:

Consider the provided information.

The circumference of base is 528 cm.

As we know C=2\pi r

Where C is the circumference and r is the radius.

Substitute the respective values in the above formula.

528=2\times\frac{22}{7}\times r

r=\frac{528\times 7}{2\times 22}

r=12\times 7

r=84

Hence, the radius of the cylinder is 84 cm

84 cm = 0.84 m

The volume of cylinder is: V=\pi r^2h

Substituent r=0.84 m and h=2 m in above formula.

V=\frac{22}{7} (0.84)^2(2)

V=\frac{22}{7} (0.7056)(2)

V=22(0.1008)(2)

V=4.4352

Hence, the volume of cylinder is 4.4352 m³ .

Therefore, the correct option is (4) 4.4352 m³

#Learn more

A cylindrical container is filled with ice-cream, whose radius is 6 cm and height is 15 cm. The whole ice-cream is distributed to 10 children in equal cones having hemispherical tops. If the height of the conical in equal cones having hemispherical tops. If the height of the conical portion is 4 times the radius of the base, find the radius of the ice-cream cone.

https://brainly.in/question/988798

Similar questions