Math, asked by pankaj9yadav9, 11 months ago

किसी वर्ग के दो सम्मुख शीर्ष (-1,2) और (3,2) हैं। वर्ग के अन्य दोनों शीर्ष ज्ञात कीजिए।
NCERT​

Answers

Answered by ansh4669
2

Answer:

(-2,1)and (2,3)

Step-by-step explanation:

eanter change the digites

Answered by lublana
0

The other two vertices of square are (1,0) and (1,4) or (1,4) and (1,0)

Step-by-step explanation:

Let other two opposite vertices of the square are B (x,y) and  D(x',y').

Let two given vertices of square are A(-1,2) and C (3,2).

We know that all sides of square are equal.

Mid-point formula:

x=\frac{x_1+x_2}{2},y=\frac{y_1+y_2}{2}

Using mid-point formula

Mid- point of AC

x=\frac{-1+3}{2}=1

y=\frac{2+2}{2}=2

Mid-point of AC=(1,2)

Distance formula:\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

The distance between A(-1,2) and C (3,2)=\sqrt{(3+1)^2+(2-2)^2}=4 units

Distance between A (-1,2) and B (x,y)=AB=\sqrt{(x+1)^2+(y-2)^2}

BC=\sqrt{(3-x)^2+(2-y)^2}

AB=BC

AB^2=BC^2

(x+1)^2+(y-2)^2=(3-x)^2+(2-y)^2

x^2+2x+1+y^2-4y+4=9+x^2-6x+4-4y+y^2

Using the formula

(a+b)^2=a^2+b^2+2ab

2x-4y+5=-6x-4y+13

2x+6x-4y+4y=13-5

8x=8

x=\frac{8}{8}=1

AB^2+BC^2=AC^2

(x+1)^2+(y-2)^2+(3-x)^2+(2-y)^2=16

Substitute the value of x

(1+1)^2+(y-2)^2+(3-1)^2+(y-2)^2=16

4+2(y^2-4y+4)+4=16

2y^2-8y+8+8=16

2y^2-8y=16-16

y^2-4y=0

y(y-4)=0

y=0 or y-4=0\implies y=4

The coordinates of B are (1,0) or (1,4)

Using mid-point formula and using B (1,0)

1=\frac{1+x'}{2},2=\frac{0+y'}{2}

1+x'=2,4=y'

x'=2-1=1, y'=4

Using mid-point formula and using B (1,4)

1=\frac{1+x'}{2},2=\frac{4+y'}{2}

1+x'=2,4=4+y'

x'=2-1=1, y'=4-4=0

The other two vertices of square are (1,0) and (1,4) or (1,4) and (1,0)

#Learn more:

https://brainly.in/question/13029766

Similar questions