Chemistry, asked by jayantikam7468, 1 year ago

KCL crystallises same type of lattice as does Nacl calcutale the ratio of the side of unit cell of KCl to NaCl

Answers

Answered by abhi178
25
it seems your question is incomplete. A constant question is ------> KCl crystallizes in the same type of lattice as does NaCl.Given that,\frac{r_{Na^+}}{_r{Cl^-}}=0.5,\frac{r_{Na^+}}{r_{K^+}}=0.7.Calculate the ratio of the side of the unit cell for KCl to that for NaCl.

solution : we know, NaCl crystallizes in the face centered cubic lattice.

so, r_{Na^+}+r_{Cl^-}=\frac{a}{2}

where a is edge length of NaCl crystal lattice.

given, \frac{r_{Na^+}}{_r{Cl^-}}=0.5

\frac{r_{Na^+}+r_{Cl^-}}{r_{Cl^-}}=1.5

or, r_{Na^+}+r_{Cl^-}=1.5r_{Cl^-}

again, \frac{r_{Na^+}}{r_{K^+}}=0.7

or, \frac{\frac{r_{Na^+}}{r_{Cl^-}}}{\frac{r_{K^+}}{r_{Cl^-}}}=0.7

or,\frac{0.5}{\frac{r_{K^+}}{r_{Cl^-}}}=0.7

or,\frac{r_{K^+}}{r_{Cl^-}}=\frac{0.5}{0.7}

or, r_{K^+}+r_{Cl^-}=\frac{1.2}{0.7}r_{Cl^-}

now, \frac{a_{KCl}}{a_{NaCl}}=\frac{r_{K^+}+r_{Cl^-}}{r_{Na^+}+r_{Cl^-}}

= \frac{1.2}{0.7}\times\frac{1}{1.5}

= 1.142
Similar questions