Math, asked by apoorvatumma, 1 year ago

Kcosx/pi-2x when xis nt equal to pi/2
3 if x=pi/2 find k

Answers

Answered by sanjeevk28012
1

The value of k for the given function is 6  

Step-by-step explanation:

Given as :

The function f(x)

f (x) = \dfrac{kcosx}{\pi -2x}                x  ≠ \dfrac{\pi }{2}

Let The value of k = a  for  x = \dfrac{\pi }{2}

According to question

f (x) = \dfrac{kcosx}{\pi -2x}    

      = \dfrac{k}{2}  [ \dfrac{cosx}{\dfrac{\pi }{2} -x}  ]

      = \dfrac{k}{2} [ \dfrac{sin(\dfrac{\pi }{2}-x) }{\dfrac{\pi }{2} -x}  ]

now,

\lim x\underset{}{\rightarrow}_{\dfrac{\Pi }{2}} f (x) = \lim x\underset{}{\rightarrow}_{\dfrac{\Pi }{2}} \dfrac{k}{2} [ \dfrac{sin(\dfrac{\pi }{2}-x) }{\dfrac{\pi }{2} -x}  ]

Or,                  = \dfrac{k}{2} \lim x\underset{}{\rightarrow}_{\dfrac{\Pi }{2}}  \dfrac{sin(\dfrac{\pi }{2}-x) }{\dfrac{\pi }{2} -x}

                      = \dfrac{k}{2}  × 1

                      = \dfrac{k}{2}

if  x is continues at \dfrac{\pi }{2}

Then  \dfrac{k}{2} = \lim x\underset{}{\rightarrow}_{\dfrac{\Pi }{2}} f (x)

i.e      \dfrac{k}{2}  = 3

∴        k = 2 × 3

Or,    k = 6

So, The value of k for the given function = k = 6

Hence, The value of k for the given function is 6  . Answer

Similar questions