Math, asked by davidvijila515, 9 hours ago

kercises 43. 1. Find the radius of curvature for the curves
y = log x\div x \: at \: x = 1

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:y = \dfrac{logx}{x}

We know, Radius of Curvature for cartesian curve is given by

\red{\rm :\longmapsto\:\boxed{\tt{ \rho \:  =  \: \dfrac{ {\bigg[1 +  {y_{1}}^{2} \bigg]}^{\dfrac{3}{2} } }{ |y_{2}| } }}}

Now,

\rm :\longmapsto\:y = \dfrac{logx}{x}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:y_{1} = \dfrac{x\dfrac{d}{dx}logx - logx\dfrac{d}{dx}x }{ {x}^{2} }

\rm :\longmapsto\:y_{1} = \dfrac{x \times \dfrac{1}{x} - logx \times 1}{ {x}^{2} }

\rm :\longmapsto\:y_{1} = \dfrac{1 - logx}{ {x}^{2} }

So,

\rm :\longmapsto\:\boxed{\tt{ y_{1} \{ at \: x = 1 \} = \dfrac{1 - log1}{ {1}^{2} }  = 1 - 0 = 1}}

Now,

\rm :\longmapsto\:y_{1} = \dfrac{1 - logx}{ {x}^{2} }

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:y_{2} = \dfrac{ {x}^{2} \dfrac{d}{dx}(1 - logx) - (1 - logx)\dfrac{d}{dx} {x}^{2} }{ {x}^{4} }

\rm :\longmapsto\:y_{2} = \dfrac{ {x}^{2} \times  \dfrac{1}{x} - (1 - logx)2x }{ {x}^{4} }

\rm :\longmapsto\:y_{2} = \dfrac{ x - (1 - logx)2x }{ {x}^{4} }

\rm :\longmapsto\:y_{2} = \dfrac{ 1 - (1 - logx)2}{ {x}^{3} }

\rm :\longmapsto\:y_{2} = \dfrac{ 1 - 2  +  2logx}{ {x}^{3} }

\rm :\longmapsto\:y_{2} = \dfrac{ - 1  +  2logx}{ {x}^{3} }

\rm :\longmapsto\:\boxed{\tt{ y_{2}  \: at \{x = 1 \}= \dfrac{ - 1  +  2log1}{ {1}^{3} } =  - 1 + 0 =  - 1 }}

Now, On substituting the values, in the formula of radius of curvature, we get

\rm :\longmapsto\:\rho \:  =  \: \dfrac{ {\bigg[1 +  {y_{1}}^{2} \bigg]}^{\dfrac{3}{2} } }{ |y_{2}| }

\rm :\longmapsto\:\rho \:  =  \: \dfrac{ {\bigg[1 +  {1}^{2} \bigg]}^{\dfrac{3}{2} } }{ | - 1| }

\rm :\longmapsto\:\rho \:  =  \: \dfrac{ {\bigg[2\bigg]}^{\dfrac{3}{2} } }{ 1 }

\bf\implies \: \rho \:  =  \: 2 \sqrt{2}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used :-

\boxed{\tt{ \dfrac{d}{dx}logx =  \frac{1}{x} \: }}

\boxed{\tt{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}  \: }}

\boxed{\tt{ \dfrac{d}{dx}k = 0 \: }}

\boxed{\tt{ \dfrac{d}{dx} \frac{u}{v} =  \frac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2} } }}

\boxed{\tt{ log1 = 0}}

Similar questions