Math, asked by mamtajiya810, 3 months ago

ki?
9
(v) A fraction becomes if 2 is added to both the numerator and the denominator.
11
If, 3 is added to both the numerator and the denominator it becomes Find the
fraction
6​

Answers

Answered by Honeydisha
3

Answer:

-9/1

Step-by-step explanation:

Let the required fraction be say a/b

According to the questions we get 2 equations

a - 2b = 11

a - 6b = 15

on solving those equations we get ,

a = 9

b = -1

For the full solution refer the pic

thank you

pls mark as brainly

be safe

Attachments:
Answered by Evilhalt
309

 \clubs \:  \: { \underline{ \large{ \textsf{ \textbf{ \sf{ \color{purple}{Question : }}}}}}}

A fraction becomes 9/11 if 2 is added to both numerator and denominator. If 3 is added to both numerator and denominator it becomes 5/6, find the fraction by substitution method .

 \clubs \:  \: { \underline{ \large{ \textsf{ \textbf{ \sf{ \color{purple}{Answer : }}}}}}}

  • The fraction is  \large \pink{ \frac{7}{9} }

 \clubs \:  \: { \underline{ \large{ \textsf{ \textbf{ \sf{ \color{purple}{ Solution: }}}}}}}

  • Let the Numerator be (x)
  • & Denominator be (y) .

  \qquad \sf \red{so \: the \: fraction \: is \:  (\frac{x}{y}) }

 \clubs \:  { \underline{ \sf{ \color{red}{Given : }}}}

  • If 2 is added to both the numerator and denominator , fraction becomes 9/11

 \qquad  \bullet \:  \: \sf \green{so  \: \:  \frac{numerator + 2}{denominator + 2}  =  \frac{9}{11} }

 \qquad  \bullet \:  \: \sf \green{  \: \:  \frac{x + 2}{y + 2}  =  \frac{9}{11} }

  • By cross Multiplication

 \qquad   \mapsto\sf{11(x + 2) = 9(y + 2)}

 \qquad   \mapsto\sf{11x + 22= 9y + 18}

 \qquad   \mapsto\sf{11x - 9y = 18 - 22}

 \qquad   \mapsto\sf{11x - 9y =  ( - 4)} \:  \:  \:  \:  \: ... \tiny{equation \: (1)}

Also,

 \clubs \:  { \underline{ \sf{ \color{red}{Given  \: that \: : }}}}

  • If 3 is added to both the numerator and denominator, fraction becomes 5/6

 \qquad  \bullet \:  \: \sf \green{so  \: \:  \frac{numerator + 3}{denominator + 3}  =  \frac{5}{6} }

 \qquad  \bullet \:  \: \sf \green{  \: \:  \frac{x + 3}{y + 3}  =  \frac{5}{6} }

  • By cross Multiplication

 \qquad   \mapsto\sf{6(x + 3) = 5(y + 3)}

 \qquad   \mapsto\sf{6x + 18 = 5y + 15}

 \qquad   \mapsto\sf{6x  - 5y =15 - 18}

 \qquad   \mapsto\sf{6x  - 5y =( - 3)} \:  \:  \: ... \tiny{equation \: (2)}

  • Hence, our 2 equations are :–

 \qquad   \leadsto\sf{11x - 9y =  ( - 4)} \:  \:  \:  \:  \: ... \tiny{equation \: (1)}

 \qquad   \leadsto\sf{6x  - 5y =( - 3)} \:  \:  \: ... \tiny{equation \: (2)}

  • From equation (1)

 \qquad   \leadsto\sf{11x  = -  9y  = ( -  4)}

 \qquad   \leadsto\sf{11x  - 9y = ( - 4)}

 \qquad   \leadsto\sf{x =   \left(\frac{9y - 4}{11}  \right )}

  • putting the values of x in equation (2)

 \qquad   \leadsto\sf{6x  - 5y =( - 3)}

  • we get,

 \qquad \sf {6  \: \left( \frac{9y - 4}{11}  \right) - 5y + 3 = 0}

  • Multiplying both sides by 11

 \qquad \sf {11 \times 6  \: \left( \frac{9y - 4}{11}  \right)11 \times  - 5y + 3  \times 11= 0 \times 11}

 \qquad \sf {6(9y - 4) - 55y + 33 = 0}

 \qquad \sf {6(9y) - 6(4)  - 55y + 33= 0}

 \qquad \sf {54y - 24 - 55y + 33= 0}

 \qquad \sf {( - y) + (9)= 0}

 \qquad \sf \pink{( y) = 9}

  • putting y = 9 in equation (1)

 \qquad \leadsto \sf{11x - 9y = ( - 4)}

 \qquad \leadsto \sf{11x - 9(9) = ( - 4)}

 \qquad \leadsto \sf{11x - 81 = ( - 4)}

 \qquad \leadsto \sf{11x= ( - 4)  + 81}

 \qquad \leadsto \sf{11x= 77}

 \qquad \leadsto \sf{x =  \frac{77}{11} }

 \qquad \leadsto { \pink{\sf{x = (7)}}}

  • Therefore, x = 7 & y = 9
  • so, Numerator (x) = 7 and (y) = 9

Hence,

  { \sf{ \color{red}{orignal \: fraction \:  =  \frac{numerator}{denominator} }}}

  { \sf{ \color{red}{orignal \: fraction \:  =  \frac{x}{y} }}}

  { \sf{ \color{red}{=  \frac{7}{9} }}}

Similar questions