Math, asked by ItzMeMukku, 1 month ago

Kindly answer and dont spam!


If you don't know the answer please leave​

Attachments:

Answers

Answered by AиgєℓíᴄAυяσяα
54

Step-by-step explanation:

Let a = 10x + y and b = 10y + x

  \bf{a}^{2}  -  {b}^{2}  =  {k}^{2}  \\  \bf \: (10x + y)^{2} -  (10x - x)^{2}  =  {k}^{2}

Now expanding

 \bf \: 100 {x}^{2}   + 20xy +  {y}^{2}  - 100 {y }^{2}  - 20xy -  {y}^{2} =  {k}^{2}   \\  \bf \: 99 {x}^{2}  - 99 {y}^{2}  =  {k}^{2}  \\  \bf   \: 99( {x}^{2}  -  {y}^{2} ) =  {k}^{2}  \\  \bf \: 99 [x + y][x - y] =  {k}^{2}  \\

Since , k is an integer k^2 is a perfect square.

Case 1

 \bf \: 99 \times 99 =  {k}^{2}  \: \\  \bf Therefore \:  [x + y] \: [x - y]  \: = 99,  \\  \bf \: which  \: gives \:  us \:  that \:  x + y  \: = 11 \:  and x - y = 9

Case 2

 \bf \: 99 can \:  be \:  written \:  as \:  11 \times  {3}^{2} , \\  \bf \:  which  \: means \:  to \:  make \:  the \:  expression \:  a \:  perfect square, \: \\  \bf [x + y][x - y] = 11 \bf \: This \:  gives  \: us \:  x + y = 11 and  \: x - y = 1 \\  \bf \: The \:  values \:  that  \: satisfies \:  these  \: equations \:  would \:  be \:  \\  \bf x = 6 \:  and y = 5. \:  \\  \bf These  \: satisfy \:  a and b \:  (65  \: and  \: 56). \\  \bf \: So  \: k  \: = 11  \times  3 = 33 \\  \bf \: a + b + k = 10x + y + 10y + x + k  \\  \bf= 11(x + y) + 33 = 11(11) + 33 = 154

Similar questions