Math, asked by Anonymous, 1 month ago

Kindly answer it with a explanation! :)

Attachments:

Answers

Answered by amansharma264
10

EXPLANATION.

\sf \implies \displaystyle \int \dfrac{(1 - cot^{n - 2}x)dx }{tan x + cot x. cot^{n - 2} x}

As we know that,

We can write equation as,

\sf \implies \displaystyle \int  \dfrac{1 - \dfrac{cos^{n - 2} x}{sin^{n - 2}x } }{\dfrac{sin x}{cos x} + \dfrac{cos x}{sin x}. \dfrac{cos^{n - 2}x }{sin^{n - 2} x}  } dx.

\sf \implies \displaystyle \int  \dfrac{\bigg( \dfrac{sin^{n - 2}x - cos^{n - 2} x }{sin^{n - 2} x}\bigg) dx }{\bigg(\dfrac{sin x}{cos x}+ \dfrac{cos^{n - 1} x}{sin^{n - 1} x}\bigg)  }

\sf \implies \displaystyle \int  \dfrac{\bigg( \dfrac{sin^{n - 2}x - cos^{n - 2}x  }{sin^{n - 2} x} \bigg) dx}{\dfrac{(sin x)(sin^{n - 1}x)+ (cos x)(cos^{n - 1}  x)}{(cos x)(sin^{n - 1} x)} }

\sf \implies \displaystyle \int \bigg[ \dfrac{sin^{n - 2}x - cos^{n - 2}  x}{sin^{n - 2} x} \times \dfrac{(cos x)(sin^{n - 1} x)}{(sin^{n} x + cos^{n} x)} \bigg] dx

\sf \implies \displaystyle \int  \bigg[ \dfrac{sin^{n - 2} x - cos^{n - 2}x  }{\bigg(\dfrac{sin^{n - 1}x }{sin x} \bigg)} \times \dfrac{(cos x)(sin^{n - 1} x)}{(sin^{n}x + cos^{n} x) } \bigg] dx

\sf \implies \displaystyle \int  \bigg[ \dfrac{sin^{n - 2}x - cos^{n - 2} x }{sin^{n - 1} x} \times \dfrac{(cos x)(sin x)(sin^{n - 1}x) }{(sin^{n} x + cos^{n} x)} \bigg] dx

\sf \implies \displaystyle \int  \bigg[ \dfrac{(sin^{n - 2}x - cos^{n - 2}x) \times (cos x)(sin x)  }{(sin^{n} x + cos^{n} x)} \bigg] dx

Now, Let we assume that,

⇒ sinⁿx + cosⁿx = t.

Differentiate w.r.t x, we get.

⇒ n⁻¹(sinⁿ⁻²x - cosⁿ⁻²x)(sin x cos x) = dt.

Put the values in the equation, we get.

\sf \implies \displaystyle \frac{1}{n} \int \dfrac{1}{t}  dt.

Put the values of t = sinⁿx + cosⁿx in the equation, we get.

\sf \implies \displaystyle \frac{1}{n} log |sin^{n} x + cos^{n} x | + C.

\sf \implies \displaystyle \int \dfrac{(1 - cot^{n - 2}x)dx }{tan x + cot x. cot^{n - 2} x} = \dfrac{1}{n} log|sin^{n} x + cos^{n} x| + C.

Answered by Anonymous
1

Answer:

EXPLANATION.

\sf \implies \displaystyle \int \dfrac{(1 - cot^{n - 2}x)dx }{tan x + cot x. cot^{n - 2} x}⟹∫

tanx+cotx.cot

n−2

x

(1−cot

n−2

x)dx

As we know that,

We can write equation as,

\sf \implies \displaystyle \int \dfrac{1 - \dfrac{cos^{n - 2} x}{sin^{n - 2}x } }{\dfrac{sin x}{cos x} + \dfrac{cos x}{sin x}. \dfrac{cos^{n - 2}x }{sin^{n - 2} x} } dx.⟹∫

cosx

sinx

+

sinx

cosx

.

sin

n−2

x

cos

n−2

x

1−

sin

n−2

x

cos

n−2

x

dx.

\sf \implies \displaystyle \int \dfrac{\bigg( \dfrac{sin^{n - 2}x - cos^{n - 2} x }{sin^{n - 2} x}\bigg) dx }{\bigg(\dfrac{sin x}{cos x}+ \dfrac{cos^{n - 1} x}{sin^{n - 1} x}\bigg) }⟹∫

(

cosx

sinx

+

sin

n−1

x

cos

n−1

x

)

(

sin

n−2

x

sin

n−2

x−cos

n−2

x

)dx

\sf \implies \displaystyle \int \dfrac{\bigg( \dfrac{sin^{n - 2}x - cos^{n - 2}x }{sin^{n - 2} x} \bigg) dx}{\dfrac{(sin x)(sin^{n - 1}x)+ (cos x)(cos^{n - 1} x)}{(cos x)(sin^{n - 1} x)} }⟹∫

(cosx)(sin

n−1

x)

(sinx)(sin

n−1

x)+(cosx)(cos

n−1

x)

(

sin

n−2

x

sin

n−2

x−cos

n−2

x

)dx

\sf \implies \displaystyle \int \bigg[ \dfrac{sin^{n - 2}x - cos^{n - 2} x}{sin^{n - 2} x} \times \dfrac{(cos x)(sin^{n - 1} x)}{(sin^{n} x + cos^{n} x)} \bigg] dx⟹∫[

sin

n−2

x

sin

n−2

x−cos

n−2

x

×

(sin

n

x+cos

n

x)

(cosx)(sin

n−1

x)

]dx

\sf \implies \displaystyle \int \bigg[ \dfrac{sin^{n - 2} x - cos^{n - 2}x }{\bigg(\dfrac{sin^{n - 1}x }{sin x} \bigg)} \times \dfrac{(cos x)(sin^{n - 1} x)}{(sin^{n}x + cos^{n} x) } \bigg] dx⟹∫[

(

sinx

sin

n−1

x

)

sin

n−2

x−cos

n−2

x

×

(sin

n

x+cos

n

x)

(cosx)(sin

n−1

x)

]dx

\sf \implies \displaystyle \int \bigg[ \dfrac{sin^{n - 2}x - cos^{n - 2} x }{sin^{n - 1} x} \times \dfrac{(cos x)(sin x)(sin^{n - 1}x) }{(sin^{n} x + cos^{n} x)} \bigg] dx⟹∫[

sin

n−1

x

sin

n−2

x−cos

n−2

x

×

(sin

n

x+cos

n

x)

(cosx)(sinx)(sin

n−1

x)

]dx

\sf \implies \displaystyle \int \bigg[ \dfrac{(sin^{n - 2}x - cos^{n - 2}x) \times (cos x)(sin x) }{(sin^{n} x + cos^{n} x)} \bigg] dx⟹∫[

(sin

n

x+cos

n

x)

(sin

n−2

x−cos

n−2

x)×(cosx)(sinx)

]dx

Now, Let we assume that,

⇒ sinⁿx + cosⁿx = t.

Differentiate w.r.t x, we get.

⇒ n⁻¹(sinⁿ⁻²x - cosⁿ⁻²x)(sin x cos x) = dt.

Put the values in the equation, we get.

\sf \implies \displaystyle \frac{1}{n} \int \dfrac{1}{t} dt.⟹

n

1

t

1

dt.

Put the values of t = sinⁿx + cosⁿx in the equation, we get.

\sf \implies \displaystyle \frac{1}{n} log |sin^{n} x + cos^{n} x | + C.⟹

n

1

log∣sin

n

x+cos

n

x∣+C.

\sf \implies \displaystyle \int \dfrac{(1 - cot^{n - 2}x)dx }{tan x + cot x. cot^{n - 2} x} = \dfrac{1}{n} log|sin^{n} x + cos^{n} x| + C.⟹∫

tanx+cotx.cot

n−2

x

(1−cot

n−2

x)dx

=

n

1

log∣sin

n

x+cos

n

x∣+C.

Similar questions