Kindly answer it with a explanation! :)
Answers
EXPLANATION.
As we know that,
We can write equation as,
Now, Let we assume that,
⇒ sinⁿx + cosⁿx = t.
Differentiate w.r.t x, we get.
⇒ n⁻¹(sinⁿ⁻²x - cosⁿ⁻²x)(sin x cos x) = dt.
Put the values in the equation, we get.
Put the values of t = sinⁿx + cosⁿx in the equation, we get.
Answer:
EXPLANATION.
\sf \implies \displaystyle \int \dfrac{(1 - cot^{n - 2}x)dx }{tan x + cot x. cot^{n - 2} x}⟹∫
tanx+cotx.cot
n−2
x
(1−cot
n−2
x)dx
As we know that,
We can write equation as,
\sf \implies \displaystyle \int \dfrac{1 - \dfrac{cos^{n - 2} x}{sin^{n - 2}x } }{\dfrac{sin x}{cos x} + \dfrac{cos x}{sin x}. \dfrac{cos^{n - 2}x }{sin^{n - 2} x} } dx.⟹∫
cosx
sinx
+
sinx
cosx
.
sin
n−2
x
cos
n−2
x
1−
sin
n−2
x
cos
n−2
x
dx.
\sf \implies \displaystyle \int \dfrac{\bigg( \dfrac{sin^{n - 2}x - cos^{n - 2} x }{sin^{n - 2} x}\bigg) dx }{\bigg(\dfrac{sin x}{cos x}+ \dfrac{cos^{n - 1} x}{sin^{n - 1} x}\bigg) }⟹∫
(
cosx
sinx
+
sin
n−1
x
cos
n−1
x
)
(
sin
n−2
x
sin
n−2
x−cos
n−2
x
)dx
\sf \implies \displaystyle \int \dfrac{\bigg( \dfrac{sin^{n - 2}x - cos^{n - 2}x }{sin^{n - 2} x} \bigg) dx}{\dfrac{(sin x)(sin^{n - 1}x)+ (cos x)(cos^{n - 1} x)}{(cos x)(sin^{n - 1} x)} }⟹∫
(cosx)(sin
n−1
x)
(sinx)(sin
n−1
x)+(cosx)(cos
n−1
x)
(
sin
n−2
x
sin
n−2
x−cos
n−2
x
)dx
\sf \implies \displaystyle \int \bigg[ \dfrac{sin^{n - 2}x - cos^{n - 2} x}{sin^{n - 2} x} \times \dfrac{(cos x)(sin^{n - 1} x)}{(sin^{n} x + cos^{n} x)} \bigg] dx⟹∫[
sin
n−2
x
sin
n−2
x−cos
n−2
x
×
(sin
n
x+cos
n
x)
(cosx)(sin
n−1
x)
]dx
\sf \implies \displaystyle \int \bigg[ \dfrac{sin^{n - 2} x - cos^{n - 2}x }{\bigg(\dfrac{sin^{n - 1}x }{sin x} \bigg)} \times \dfrac{(cos x)(sin^{n - 1} x)}{(sin^{n}x + cos^{n} x) } \bigg] dx⟹∫[
(
sinx
sin
n−1
x
)
sin
n−2
x−cos
n−2
x
×
(sin
n
x+cos
n
x)
(cosx)(sin
n−1
x)
]dx
\sf \implies \displaystyle \int \bigg[ \dfrac{sin^{n - 2}x - cos^{n - 2} x }{sin^{n - 1} x} \times \dfrac{(cos x)(sin x)(sin^{n - 1}x) }{(sin^{n} x + cos^{n} x)} \bigg] dx⟹∫[
sin
n−1
x
sin
n−2
x−cos
n−2
x
×
(sin
n
x+cos
n
x)
(cosx)(sinx)(sin
n−1
x)
]dx
\sf \implies \displaystyle \int \bigg[ \dfrac{(sin^{n - 2}x - cos^{n - 2}x) \times (cos x)(sin x) }{(sin^{n} x + cos^{n} x)} \bigg] dx⟹∫[
(sin
n
x+cos
n
x)
(sin
n−2
x−cos
n−2
x)×(cosx)(sinx)
]dx
Now, Let we assume that,
⇒ sinⁿx + cosⁿx = t.
Differentiate w.r.t x, we get.
⇒ n⁻¹(sinⁿ⁻²x - cosⁿ⁻²x)(sin x cos x) = dt.
Put the values in the equation, we get.
\sf \implies \displaystyle \frac{1}{n} \int \dfrac{1}{t} dt.⟹
n
1
∫
t
1
dt.
Put the values of t = sinⁿx + cosⁿx in the equation, we get.
\sf \implies \displaystyle \frac{1}{n} log |sin^{n} x + cos^{n} x | + C.⟹
n
1
log∣sin
n
x+cos
n
x∣+C.
\sf \implies \displaystyle \int \dfrac{(1 - cot^{n - 2}x)dx }{tan x + cot x. cot^{n - 2} x} = \dfrac{1}{n} log|sin^{n} x + cos^{n} x| + C.⟹∫
tanx+cotx.cot
n−2
x
(1−cot
n−2
x)dx
=
n
1
log∣sin
n
x+cos
n
x∣+C.