Math, asked by naziabegunkns, 11 months ago

Kindly answer the following questions :-

Attachments:

Anonymous: Mark my Ans as brainlist if it helps u

Answers

Answered by Anonymous
2

Given \:  \: Questions \:  \: Are \:  \:  \\  \\ QUESTION \:  \: no \: 18 \\  \\ Answer \:  \\  \\ 18) \:  \:  \: x =  \frac{ \sqrt{3} +   \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \\  \\ Multiply \:  \: Numerator \: And \: Denominator \: by \:  \\  \sqrt{3}  +  \sqrt{2}  \:  \: we \: have \\  \\ x =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \\  \\ x = \frac{( \sqrt{3} +  \sqrt{2}  ) {}^{2} }{( \sqrt{3}) {}^{2}  - ( \sqrt{2}  ) {}^{2} }  \\  \\ x =  \frac{3 + 2 + 2 \sqrt{6} }{ 3 - 2}  \\  \\ x = 5 + 2 \sqrt{6}  \\  \\ x {}^{2}  = (5 + 2 \sqrt{6} ) {}^{2}  \\  \\ x {}^{2}  = 25 + 24 + 20 \sqrt{6}  \\  \\ x {}^{2}  = 49 + 20 \sqrt{6}   \:  \:  \: ... \: i\\  \\  \frac{1}{x {}^{2} }  =  \frac{1}{49 + 20 \sqrt{6} }  \\  \\ Multiply \: Numerator \:   \: and \:  \\ Denominator \: by \:  \: 49 - 20 \sqrt{6}  \\  \\  \frac{1}{x {}^{2} }  =  \frac{1}{49  + 20 \sqrt{6} }  \times  \frac{49 - 20 \sqrt{6} }{49 - 20 \sqrt{6} }  \\  \\  \frac{1}{x {}^{2} }  =  \frac{49 - 20 \sqrt{6} }{(49) {}^{2}  - (20 \sqrt{6}) {}^{2}  }  \\  \\  \frac{1}{x {}^{2} }  =  \frac{49 - 20 \sqrt{6} }{2401 - 2400}  \\  \\  \frac{1}{x {}^{2} }  = 49 - 20 \sqrt{6}  \:  \: ...ii \\  \\ from \: i \: and \: ii \: we \: have \\  \\ x {}^{2}  +  \frac{1}{x {}^{2} }  = 49 + 20 \sqrt{6}  + 49 - 20 \sqrt{6}  \\  \\ x {}^{2}  +  \frac{1}{x {}^{2} }  = 98 \\  \\ Question \: Number \:  \: 20 \\  \\ Answer \:  \:  \\  \\ a {}^{x}  = b {}^{y}  = c {}^{z}  = k \:  \:  \:  \: let \\  \\ a = k {}^{ \frac{1}{x} }  \:  \:  \: ....  \:  \: i \\  \\ b = k {}^{ \frac{1}{y} }  \:  \:  \: ... \: ii \\  \\ c = k {}^{ \frac{1}{z} }  \:  \:  \: .... \:  \:  \: iii \\  \\ Multiply \: these \: three \: equations \: we \: have \\  \\ abc = k {}^{ \frac{1}{x} }  \times k {}^{ \frac{1}{y} }  \times k {}^{ \frac{1}{z} }  \\  \\ k {}^{( \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{z} )}  = 1 \\  \\ k {}^{( \frac{1}{x}  +  \frac{1}{y} +  \frac{1}{z}  )}  = k {}^{0}  \\  \\ now \: compare \: powers \: of \: k \: we \: have \\  \\  \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{z}  = 0 \\  \\  \frac{zx + zy + xy}{xyz}  = 0 \\  \\ xy + yz + zx = 0

Similar questions
Math, 11 months ago