Math, asked by Anonymous, 9 months ago

Kindly answer with a Explanation :-)

#No spams ✔️

Attachments:

Answers

Answered by Atαrαh
20

\bigstar\huge\boxed{\mathtt{\red{Solution:}}}

Here,

\implies B=\left[\begin{array}{cc}-4&2\\5&-1\\\end{array}\right]

\implies C=\left[\begin{array}{cc}17&-1\\47&-13\\\end{array}\right]

As per the given condition ,

AB=C

_________________

we know that,

\implies AB=\left[\begin{array}{cc}a&b\\c&d\end{array}\right] \times\left[\begin{array}{cc}e&f\\g&h\end{array}\right]

\implies AB=\left[\begin{array}{cc}ae+gb&af+bh\\ce+dg&cf+dh\end{array}\right]

_________________

Similarly,

\implies AB=\left[\begin{array}{cc}a&b\\c&d\end{array}\right] \times\left[\begin{array}{cc}-4&2\\5&-1\end{array}\right]

\implies AB=\left[\begin{array}{cc}-4a+5b&2a-b\\-4c+5d&2c-d\end{array}\right]

\implies \left[\begin{array}{cc}-4a+5b&2a-b\\-4c+5d&2c-d\end{array}\right]=\left[\begin{array}{cc}17&-1\\47&-13\end{array}\right]

From this we can conclude that ,

\rightarrow -4a+5b=17 ....(1)

\rightarrow 2a -b=-1 ....(2)

Multiplying (2) by 2 we get ,

\rightarrow 4a -2b=-2 ....(3)

Adding equations (1) and (3) we get ,

\rightarrow 3b= 15

\rightarrow \boxed{b=5 }

Now substituting the value of b in (2) we get ,

\rightarrow 2a -5=-1

\rightarrow 2a = 4

\rightarrow \boxed{a = 2}

_________________

Similarly,

\rightarrow -4c+5d=47 ....(4)

\rightarrow 2c -d=-13 ....(5)

Multiplying (5) by 2 we get ,

\rightarrow 4c -2d=-26 ....(6)

Adding equations (4) and (6) we get ,

\rightarrow 3d= 21

\rightarrow \boxed{d=7}

Now substituting the value of d in (5) we get ,

\rightarrow 2c -7=-13

\rightarrow 2c =-6

\rightarrow \boxed{c =-3}

\implies A=\pink{\left[\begin{array}{cc}2&5\\-3&7\\\end{array}\right]}

Answered by MissRostedKaju
2

{\huge{\fcolorbox{purple}{pink}{\fcolorbox{yellow}{red}{\bf{\color{white}{ǫᴜᴇsᴛɪᴏɴ}}}}}}

If B = \binom{ - 4 \:  \:  \:  \: 2}{5 \:  \:  \:  \:  - 1}and \: c = \binom{17 \:  \:  \:  \:  - 1}{47 \:  \:  \:  \:  - 13} find \: matrix \: a \: such \: that \: ab = c

{\huge{\fcolorbox{purple}{pink}{\fcolorbox{yellow}{red}{\bf{\color{white}{ᴀɴsᴡᴇʀ}}}}}}

Find the matrix A such that AB = C

B = \binom{ - 4 \:  \:  \:  \: 2}{5 \:  \:  \:  \:  - 1} \\ c = \binom{17 \:  \:  \:  \:  - 1}{47 \:  \:  \:  \:  - 13} \\ and \: ab = c \\ let \: a = \binom{a \:  \:  \:  \:  b}{c \:  \:  \:  \:  d} \\ then \: ab = \binom{a \:  \:  \:  \:  b}{c \:  \:  \:  \:  d} \\ \times { - 4 \:  \:  \:  \: 2}{5 \:  \:  \:  \:  - 1} \\  = \binom{ - 4a + 5b  \: 2a - b}{ - 4c + 5d \: 2c - d} \\ AB = C \\ \binom{ - 4a

Comparing corresponding elements , we get

=> -4a + 5b = 17

=> 2a - b = -1

=> -4c + 5d = 47

=> 2c - d = -13

multiplying by 1 and by 2

==> -4a + 5b = 17

4a - 2b = -2

Adding

3b = 15

=>b = 15/3 = 5

=>2a - b = -1

=> 2a = -1 + 5 = 4

=> a = 4/2 + 2

a = 2, b = 5

again multiply by 1 and by 2

-4c + 5d = 47

4c - 2d = 26

3d = 21

==> d = 21/3 = 7

and

2c - d = -13

=> 2c -7 = -13

=> 2c = -13 + 7 = -6

=> c = -6/2 = -3

C = -3, D = 7

Now  \: matrix \:  A =  \binom{2 \:  \:  \:  \:  5}{ - 3 \:  \:  \:  \: 7}

Similar questions