Math, asked by NITESH761, 12 hours ago

kindly anybody please solve this.​

Attachments:

Answers

Answered by anindyaadhikari13
7

\textsf{\large{\underline{Solution}:}}

Given Polynomial:

 \rm \longrightarrow f(x) = {x}^{2}  + px - q

Let α and β be the zeros of f(x)

Then:

 \rm \longrightarrow  \alpha  +  \beta  =  - p

 \rm \longrightarrow  \alpha \beta  =  - q

Now, it's given that:

 \rm \longrightarrow k =  \dfrac{ \alpha }{ \beta }

Consider the expression given:

 \rm =  \dfrac{k}{1 +  {k}^{2} }

 \rm =  \dfrac{ \dfrac{ \alpha }{ \beta } }{1 +  { \dfrac{ \alpha  {}^{2} }{ \beta  {}^{2} } }}

 \rm =  \dfrac{ \dfrac{ \alpha }{ \beta } }{ { \dfrac{ \alpha {}^{2}  +  { \beta }^{2} }{ \beta  {}^{2} } }}

 \rm =  \dfrac{  \alpha  }{ { \dfrac{ \alpha {}^{2}  +  { \beta }^{2} }{ \beta  } }}

 \rm =  \dfrac{  \alpha \beta   }{\alpha {}^{2}  +  { \beta }^{2} }

 \rm =  \dfrac{  \alpha \beta }{ {( \alpha   + \beta )}^{2} - 2 \alpha  \beta  }

 \rm =  \dfrac{ - q }{ {p}^{2} + 2q}

★ Which is our required answer.

\textsf{\large{\underline{Learn More}:}}

1. Relationship between zeros and coefficients (Quadratic Polynomial)

Let f(x) = ax² + bx + c and let α and β be the zeros of f(x).

Therefore:

\rm\longrightarrow\alpha+\beta=\dfrac{-b}{a}

\rm\longrightarrow\alpha\beta=\dfrac{c}{a}

2. Relationship between zeros and coefficients (Cubic Polynomial)

Let f(x) = ax³ + bx² + cx + d and let α, β and γ be the zeros of f(x).

Therefore:

\rm\longrightarrow \alpha+\beta+\gamma=\dfrac{-b}{a}

\rm\longrightarrow \alpha\beta+\beta\gamma+\alpha\gamma=\dfrac{c}{a}

\rm\longrightarrow \alpha\beta\gamma=\dfrac{-d}{a}


anindyaadhikari13: Thanks for the brainliest :)
Answered by NishiDubey48
1

Answer:

bro is just like your question answer but this is not right answer

Attachments:
Similar questions