Math, asked by FreewayShreya, 19 days ago

•kindly don't spam☜ (↼_↼)

Attachments:

Answers

Answered by mathdude500
10

Given Question :-

Show that matrix A is an Orthogonal matrix, where

\rm \: A = \begin{bmatrix} cos \alpha  & sin \alpha \\  - sin \alpha  & cos \alpha \end{bmatrix} \\

\large\underline{\sf{Solution-}}

Given matrix is

\rm \: A = \begin{bmatrix} cos \alpha  & sin \alpha \\  - sin \alpha  & cos \alpha \end{bmatrix} \\

We know,

A square matrix A is said to be Orthogonal matrix iff AA' = I

So, Consider

\rm \: A' = \begin{bmatrix} cos \alpha  &  - sin \alpha \\  sin \alpha  & cos \alpha \end{bmatrix} \\

Now, Consider

\rm \: A \: A'

\rm \:  =  \: \begin{bmatrix} cos \alpha  &  sin \alpha \\  -  sin \alpha  & cos \alpha \end{bmatrix} \: \begin{bmatrix} cos \alpha  &  - sin \alpha \\  sin \alpha  & cos \alpha \end{bmatrix}

\rm \:  =  \: \begin{bmatrix}  {cos}^{2} \alpha  +  {sin}^{2} \alpha    &  - sin \alpha  \: cos\alpha  +cos \alpha \:  sin \alpha\\  - sin \alpha  \: cos \alpha + cos \alpha  \: sin \alpha &  {cos}^{2} \alpha  +  {sin}^{2} \alpha   \end{bmatrix} \\

\rm \:  =  \: \begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix}

\rm \:  =  \: I

\rm\implies \:AA' =  I \\

\rm\implies \:A \: is \: orthogonal \: matrix \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf Square \: Matrix & \bf Condition \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf Idempotent & \sf  {A}^{2} = A  \\ \\ \sf Nilpotent & \sf  {A}^{n}  = 0 \\ \\ \sf Involutory & \sf  {A}^{2} =  I\\ \\ \sf Symmetric & \sf  {A}'=  A\\ \\ \sf Skew \: Symmetric & \sf  {A}' =   - A \end{array}} \\ \end{gathered} \\

Answered by Anonymous
21

{ \pmb{ \frak {\underline \red{given  \: : }}}}

\rm\bullet{ \: Show \:  that  \: matrix \begin{gathered}\rm \: A' = \begin{bmatrix}  \rm cos \alpha &  \rm sin \alpha \\ \rm - sin \alpha &  \rm \cos \alpha \end{bmatrix} \\ \end{gathered} }\\  \rm \: is \: an \: orthogonal \: matrix.

{ \pmb{ \frak {\underline \red{Solution  \: : }}}}

 \longmapsto\rm { Any \:  matrix \:  A'}

 \longmapsto\rm  \boxed{ \rm {AA'} ^{T} = I}

\longmapsto\rm{\begin{gathered}\rm \: A' = \begin{bmatrix}  \rm cos \alpha &  \rm sin \alpha \\ \rm - sin \alpha &  \rm \cos \alpha \end{bmatrix} \\ \end{gathered} }

\longmapsto\rm{\begin{gathered}\rm \: A = \begin{bmatrix}  \rm cos \alpha &  \rm -sin \alpha \\ \rm sin \alpha &  \rm \cos \alpha \end{bmatrix} \\ \end{gathered} }

\longmapsto\rm{\begin{gathered}\rm \:{A A' }^{T}= \begin{bmatrix}  \rm cos \alpha &  \rm sin \alpha \\ \rm -sin \alpha &  \rm \cos \alpha \end{bmatrix} \\ \end{gathered} }

\longmapsto\rm{\begin{gathered}\rm \:{A A '}^{T}= \begin{bmatrix}  \rm sin^{2}\alpha + cos^{2}\alpha & 0  \\ \rm 0 &  \rm sin^{2}\alpha + cos^{2} \end{bmatrix} \\ \end{gathered} }

\longmapsto\rm{\begin{gathered}\rm \:{A A' }^{T}= \begin{bmatrix}  \rm 1 & 0  \\ \rm 0 &  \rm 1 \end{bmatrix} \\ \end{gathered} } =  \: I

 \:  \:  \:  \:  \: \bigstar\rm{ \: The  \: matrix  \: orthagonal }

 \ \:  \:  \:  \:  \:  \:   \dag{\pmb{\frak{\underline{ \red{Proved}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

@Shivam

#BeBrainly

Similar questions